Scattering of two-dimensional dark quasi-solitons by smooth inhomogeneities in a Bose-Einstein condensate

被引:0
作者
V. A. Mironov
L. A. Smirnov
机构
[1] Russian Academy of Sciences,Institute of Applied Physics
来源
Physics of Wave Phenomena | 2013年 / 21卷
关键词
Vortex; Soliton; Impact Parameter; Vortex Pair; Einstein Condensate;
D O I
暂无
中图分类号
学科分类号
摘要
It is theoretically shown that creation of artificial inhomogeneities allows one to control dynamics of two-dimensional dark quasi-solitons in a Bose-Einstein condensate. A method to calculate trajectories of these quasi-solitons is proposed. It allows control parameters to be selected for the potentials responsible for formation of the Bose gas density distributions required for the scattering through the given angle.
引用
收藏
页码:62 / 67
页数:5
相关论文
共 48 条
  • [1] Neely T.W.(2010)Observation of Vortex Dipoles in an Oblate Bose-Einstein Condensate Phys. Rev. Lett. 104 160401-undefined
  • [2] Samson E. C.(2010)Real-Time Dynamics of Single Vortex Lines and Vortex Dipoles in a Bose-Einstein Condensate Science 329 1182-undefined
  • [3] Bradley A.S.(2011)Guiding-Center Dynamics of Vortex Dipoles in Bose-Einstein Condensates Phys. Rev. A. 84 011605-undefined
  • [4] Davis M. J.(2012)Dynamics of Two-Dimensional Dark Quasisolitons in a Smoothly Inhomogeneous Bose-Einstein Condensate Phys. Rev. A. 85 053620-undefined
  • [5] Anderson B.P.(2012)Propagation and Annihilation of Vortex Pairs in a Smoothly Inhomogeneous Bose-Einstein Condensate JETP Lett. 95 549-undefined
  • [6] Freilich D.V.(2010)Resource Article: Experiments with Vortices in Superfluid Atomic Gases J. Low Temp. Phys. 161 574-undefined
  • [7] Bianchi D. M.(2010)Structure of Vortex Shedding Past Potential Barriers Moving in a Bose-Einstein Condensate JETP. 110 877-undefined
  • [8] Kaufman A. M.(2011)Controlled Generation and Manipulation of Vortex Dipoles in a Bose-Einstein Condensate Phys. Rev. X. 1 021003-undefined
  • [9] Langin T. K.(1982)Motions in a Bose Condensate. IV. Axisymmetric Solitary Waves J. Phys. A: Math. Gen. 15 2599-undefined
  • [10] Hall D. S.(1986)Motions in a Bose Condensate. V. Stability of Solitary Wave Solutions of Non-Linear Schrödinger Equations in Two and Three Dimensions J. Phys. A: Math. Gen. 19 2991-undefined