A fractional Kirchhoff system with singular nonlinearities

被引:0
作者
K. Saoudi
机构
[1] Imam Abdulrahman Bin Faisal University,College of Sciences at Dammam
来源
Analysis and Mathematical Physics | 2019年 / 9卷
关键词
Kirchhoff-type equations; Fractional Laplace operator; Nehari manifold; Singular elliptic system; Multiple positive solutions; 34B15; 37C25; 35R20;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we consider the following fractional Kirchhoff equations with singular nonlinearity: M(∫R2N|u(x)-u(y)|2|x-y|N+2sdxdy)(-Δ)su=λa(x)|u|q-2u+1-α2-α-βc(x)|u|-α|v|1-β,inΩ,M(∫R2N|v(x)-v(y)|2|x-y|N+2sdxdy)(-Δ)sv=μb(x)|v|q-2v+1-β2-α-βc(x)|u|1-α|v|-β,inΩ,u=v=0,inRN\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} M\Big ( \int _{\mathbb {R}^{2N}}\frac{|u(x)-u(y)|^{2}}{|x-y|^{N+2s}}dx dy\Big )(-\Delta )^s u = \lambda a(x)|u|^{q-2}u +\frac{1-\alpha }{2-\alpha -\beta } c(x)|u|^{-\alpha }|v|^{1-\beta }, \quad \text {in }\Omega ,\\ M\Big ( \int _{\mathbb {R}^{2N}}\frac{|v(x)-v(y)|^{2}}{|x-y|^{N+2s}}dx dy\Big ) (-\Delta )^s v= \mu b(x)|v|^{q-2}v +\frac{1-\beta }{2-\alpha -\beta } c(x)|u|^{1-\alpha }|v|^{-\beta }, \quad \text {in }\Omega ,\\ u=v = 0,\;\; \text{ in } \,\mathbb {R}^N\setminus \Omega , \end{array} \right. \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document} with smooth boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N> 2s$$\end{document}, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in (0,1)$$\end{document}, 0<α<1,0<β<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha<1,\;0<\beta <1,$$\end{document}0<α+β<2θ<q<2s∗,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha +\beta<2\theta<q<2^*_s,$$\end{document}2s∗=2NN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*_s=\frac{2N}{N-2s}$$\end{document} is the fractional Sobolev exponent, λ,μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda , \mu $$\end{document} are two parameters, a,b,c∈C(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,\, b, \,c \in C({\overline{\Omega }})$$\end{document} are non-negative weight functions, M is a continuous function, given by M(t)=k+ltθ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(t)=k+lt^{\theta -1}$$\end{document}k>0,l,θ≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>0,\,l,\,\theta \ge 1,$$\end{document} and (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} is the fractional Laplacien operator. We use the Nehari manifold approach and some variational techniques in order to show the existence and multiplicity of positive solutions of the above problem with respect to the parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}.
引用
收藏
页码:1463 / 1480
页数:17
相关论文
共 49 条
[1]  
Barrios B(2015)Semilinear problems for the fractional laplacian with a singular nonlinearity Open Math. 13 390-407
[2]  
De Bonis I(1989)On a singular nonlinear Dirichlet problem Commun. Partial Differ. Equ. 14 1315-1327
[3]  
Maria M(1977)On a Dirichlet problem with a singular nonlinearity Commun. Partial Differ. Equ. 2 193-222
[4]  
Peral I(2004)Best constants for Sobolev inequalities for higher order fractional derivatives J. Math. Anal. Appl. 295 225-236
[5]  
Coclite MM(1997)Positive solutions for the p-Laplacian: application of the fibering method Proc. R. Soc. Edinb. Sect. A 127 703-726
[6]  
Palmieri G(2012)Global bifurcation and local multiplicity results for elliptic equations with singular nonlinearity of super exponential growth in $\mathbb{R}^2$ Adv. Differ. Equ. 17 369-400
[7]  
Crandall MG(2006)Singular elliptic problems with lack of compactness Ann. Mat. Pura Appl. (4) 185 63-79
[8]  
Rabinowitz PH(2016)The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator Fract. Differ. Calculus 6 201-217
[9]  
Tartar L(2009)Multiplicity of positive solutions for a singular and critical problem Nonlinear Anal. 71 4060-4077
[10]  
Cotsiolis A(2015)Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents J. Math. Anal. Appl. 421 521-538