Asymptotic and constructive methods for covering perfect hash families and covering arrays

被引:0
作者
Charles J. Colbourn
Erin Lanus
Kaushik Sarkar
机构
[1] Arizona State University,Computing, Informatics, and Decision Systems Engineering
来源
Designs, Codes and Cryptography | 2018年 / 86卷
关键词
Covering array; Covering perfect hash family; Conditional expectation algorithm; Asymptotic bound; 05B40; 05B15; 05D40; 05E18; 51E20;
D O I
暂无
中图分类号
学科分类号
摘要
Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with v symbols, k columns, and strength t. One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when k≤75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 75$$\end{document} for strength seven, k≤200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 200$$\end{document} for strength six, k≤600\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 600$$\end{document} for strength five, and k≤2500\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 2500$$\end{document} for strength four. When v>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v > 3$$\end{document}, almost all known explicit constructions are improved upon. For strength t=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=3$$\end{document}, restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for t=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=3$$\end{document} and k≤10,000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 10{,}000$$\end{document} again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment.
引用
收藏
页码:907 / 937
页数:30
相关论文
共 98 条
  • [1] Bryce RC(2007)The density algorithm for pairwise interaction testing Softw. Test. Verif. Reliab. 17 159-182
  • [2] Colbourn CJ(2009)A density-based greedy algorithm for higher strength covering arrays Softw. Test. Verif. Reliab. 19 37-53
  • [3] Bryce RC(2002)Experimental design for combinatorial and high throughput materials development GE Glob. Res. Tech. Rep. 29 769-781
  • [4] Colbourn CJ(1999)Covering arrays of strength 3 Des. Codes Cryptogr. 16 235-242
  • [5] Cawse JN(2002)On the state of strength-three covering arrays J. Comb. Des. 10 217-238
  • [6] Chateauneuf MA(1997)The AETG system: an approach to testing based on combinatorial design IEEE Trans. Softw. Eng. 23 437-444
  • [7] Colbourn CJ(2008)Constructing strength three covering arrays with augmented annealing Discret. Math. 308 2709-2722
  • [8] Kreher DL(2004)Combinatorial aspects of covering arrays Le Matematiche (Catania) 58 121-167
  • [9] Chateauneuf MA(2008)Strength two covering arrays: existence tables and projection Discret. Math. 308 772-786
  • [10] Kreher DL(2010)Covering arrays from cyclotomy Des. Codes Cryptogr. 55 201-219