Complete classification of (δ+αu2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\delta +\alpha u^2)$$\end{document}-constacyclic codes over F3m[u]/⟨u4⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{3^m}[u]/\langle u^4\rangle $$\end{document} of length 3n

被引:0
|
作者
Yuan Cao
Yonglin Cao
Li Dong
机构
[1] Shandong University of Technology,School of Science
关键词
Constacyclic code; Dual code; Linear code; Finite chain ring; 94B15; 94B015; 11T71;
D O I
10.1007/s00200-017-0328-9
中图分类号
学科分类号
摘要
Let F3m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{3^m}$$\end{document} be a finite field of cardinality 3m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^m$$\end{document}, R=F3m[u]/⟨u4⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R={\mathbb {F}}_{3^m}[u]/\langle u^4\rangle $$\end{document} which is a finite chain ring, and n be a positive integer satisfying gcd(3,n)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{gcd}(3,n)=1$$\end{document}. For any δ,α∈F3m×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ,\alpha \in {\mathbb {F}}_{3^m}^{\times }$$\end{document}, an explicit representation for all distinct (δ+αu2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\delta +\alpha u^2)$$\end{document}-constacyclic codes over R of length 3n is given, formulas for the number of all such codes and the number of codewords in each code are provided, respectively. Moreover, the dual code for each of these codes is determined explicitly.
引用
收藏
页码:13 / 39
页数:26
相关论文
共 50 条