Crowd synchrony in chaotic oscillators

被引:0
作者
Harpartap Singh
P. Parmananda
机构
[1] Indian Institute of Technology Bombay,Department of Physics
来源
Nonlinear Dynamics | 2015年 / 80卷
关键词
Quorum sensing; Synchronization; Collective dynamics; Chaotic neuronal oscillator; Chua’s circuit;
D O I
暂无
中图分类号
学科分类号
摘要
Quorum sensing is a phenomenon wherein the size of an ensemble (population density) decides its dynamical state. This happens when its constituting elements alter their dynamics coherently with the change in their population. In case of chaotic ensemble, as a precursor to the emergence of global chaotic synchronization, the chaotic elements undergo various dynamical transitions (chaotic state →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} silent/periodic state →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} periodic state/ intermittent chaos →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} chaotic state) sequentially with the increase in their population. Among these sequence of quorum transitions, we mark the transition periodic state/intermittent chaos →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} chaotic state (i.e the final quorum transition between the unsynchronized and synchronized chaotic states) as a ‘crowd synchrony’ transition for convenience. In contrast to the conventional quorum sensing mechanism, we study this population-based phenomenon by exploring the scenario wherein the chaotic elements interact via an element (of same kind) resting in a steady state, i.e the surrounding of the elements is not only dynamic but also incorporates the underlying features of the elements. Apart from the other advantages (discussed in the text), considering the surrounding of the elements as an element, resolves the issue regarding the dimensionality of the surround (which has not been addressed before) when more than one interacting species are involved. The proposed mechanism has been tested on two different class of chaotic oscillators: spiking neuron (i.e a relaxed biological oscillator) and Chua’s circuit, i.e a sinusoidal-type electrical oscillator (for the experimental verification).
引用
收藏
页码:767 / 776
页数:9
相关论文
共 83 条
[21]  
Eckhardt B(2012)Phase transition in crowd synchrony of delay-coupled multilayer laser networks Opt. Express 20 19,683-102
[22]  
Ott E(2013)Electronic implementation of a repressilator with quorum sensing feedback PLoS One 8 e62,997-20
[23]  
Camilli A(2013)Quorum sensing via static coupling demonstrated by Chua’s circuits Phys. Rev. E 88 040,903-317
[24]  
Bassler BL(2012)Dynamical quorum-sensing in oscillators coupled through an external medium Phys. D Nonlinear Phenom. 241 1782-1110
[25]  
De Monte S(1984)A model of neuronal bursting using three coupled first order differential equations Proc. R. Soc. Lond. B Biol. Sci. 221 87-undefined
[26]  
d’Ovidio F(1980)Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 1: Theory Meccanica 15 9-undefined
[27]  
Dano S(1985)Determining lyapunov exponents from a time series Phys. D 16 285-undefined
[28]  
Sorensen PG(1986)Phase transitions in active rotator systems Prog. Theor. Phys. 75 1105-undefined
[29]  
Danino T(undefined)undefined undefined undefined undefined-undefined
[30]  
Mondragon-Palomino O(undefined)undefined undefined undefined undefined-undefined