Crowd synchrony in chaotic oscillators

被引:0
作者
Harpartap Singh
P. Parmananda
机构
[1] Indian Institute of Technology Bombay,Department of Physics
来源
Nonlinear Dynamics | 2015年 / 80卷
关键词
Quorum sensing; Synchronization; Collective dynamics; Chaotic neuronal oscillator; Chua’s circuit;
D O I
暂无
中图分类号
学科分类号
摘要
Quorum sensing is a phenomenon wherein the size of an ensemble (population density) decides its dynamical state. This happens when its constituting elements alter their dynamics coherently with the change in their population. In case of chaotic ensemble, as a precursor to the emergence of global chaotic synchronization, the chaotic elements undergo various dynamical transitions (chaotic state →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} silent/periodic state →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} periodic state/ intermittent chaos →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} chaotic state) sequentially with the increase in their population. Among these sequence of quorum transitions, we mark the transition periodic state/intermittent chaos →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} chaotic state (i.e the final quorum transition between the unsynchronized and synchronized chaotic states) as a ‘crowd synchrony’ transition for convenience. In contrast to the conventional quorum sensing mechanism, we study this population-based phenomenon by exploring the scenario wherein the chaotic elements interact via an element (of same kind) resting in a steady state, i.e the surrounding of the elements is not only dynamic but also incorporates the underlying features of the elements. Apart from the other advantages (discussed in the text), considering the surrounding of the elements as an element, resolves the issue regarding the dimensionality of the surround (which has not been addressed before) when more than one interacting species are involved. The proposed mechanism has been tested on two different class of chaotic oscillators: spiking neuron (i.e a relaxed biological oscillator) and Chua’s circuit, i.e a sinusoidal-type electrical oscillator (for the experimental verification).
引用
收藏
页码:767 / 776
页数:9
相关论文
共 83 条
[1]  
Konigsberg IR(1971)Diffusion-mediated control of myoblast fusion Dev. Biol. 26 133-152
[2]  
Martz E(1972)The role of cell–cell contact in contact inhibition of cell division: a review and new evidence J. Cell. Physiol. 79 189-210
[3]  
Steinberg MS(1972)Cell coupling in developing systems: the heart cell paradigm Curr. Top. Dev. Biol. 7 193-228
[4]  
DeHaan RL(1976)Cell density dependence of oscillatory metabolism Nature 259 670-671
[5]  
Sachs HG(1999)Sustained oscillations in living cells Nature 402 320-322
[6]  
Aldridge J(2001)Quorum sensing in bacteria Ann. Rev. Microbiol. 55 165-199
[7]  
Pye EK(2004)Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing Proc. Natl. Acad. Sci. USA 101 10,955-10,960
[8]  
Dano S(2005)Quorum sensing: cell-to-cell communication in bacteria Ann. Rev. Cell Dev. Biol. 21 319-346
[9]  
Sorensen PG(2005)Theoretical mechanics: crowd synchrony on the millennium bridge Nature 438 43-44
[10]  
Hynne F(2006)Bacterial small-molecule signaling pathways Science 311 1113-1116