Orbit equivalence rigidity for ergodic actions of the mapping class group

被引:0
作者
Yoshikata Kida
机构
[1] Tohoku University,Mathematical Institute
来源
Geometriae Dedicata | 2008年 / 131卷
关键词
The mapping class group; Orbit equivalence; Conjugacy; OE superrigidity; 20F38; 37A20; 37A35;
D O I
暂无
中图分类号
学科分类号
摘要
We establish orbit equivalence rigidity for any ergodic, essentially free and measure-preserving action on a standard Borel space with a finite positive measure of the mapping class group for a compact orientable surface with higher complexity. We prove similar rigidity results for a finite direct product of mapping class groups as well.
引用
收藏
页码:99 / 109
页数:10
相关论文
共 19 条
  • [1] Connes A.(1982)An amenable equivalence relation is generated by a single transformation Ergodic Theory Dynam. Systems 1 431-450
  • [2] Feldman J.(1959)On groups of measure preserving transformation I. Am. J. Math. 81 119-159
  • [3] Weiss B.(1963)On groups of measure preserving transformations. II Am. J. Math. 85 551-576
  • [4] Dye H.A.(1977)Ergodic equivalence relations, cohomology, and von Neumann algebras. I Trans. Am. Math. Soc. 234 289-324
  • [5] Dye H.A.(1999)Gromov’s measure equivalence and rigidity of higher rank lattices Ann. Math. 150 1059-1081
  • [6] Feldman J.(1999)Orbit equivalence rigidity Ann. Math. 150 1083-1108
  • [7] Moore C.C.(2002)Invariants ℓ Publ. Math. Inst. Hautes Études Sci. 95 93-150
  • [8] Furman A.(1991) de relations d’équivalence et de groupes J. Differential Geom. 33 263-292
  • [9] Furman A.(1997)Kähler hyperbolicity and Internat. Math. Res. Notices 14 651-666
  • [10] Gaboriau D.(2000)-Hodge theory Topology 39 283-298