Free idempotent generated semigroups and endomorphism monoids of independence algebras

被引:0
作者
Yang Dandan
Victoria Gould
机构
[1] Xidian Univeristy,School of Mathematics and Statistics
[2] University of York,Department of Mathematics
来源
Semigroup Forum | 2016年 / 93卷
关键词
Independence algebra; Idempotent; Biordered set;
D O I
暂无
中图分类号
学科分类号
摘要
We study maximal subgroups of the free idempotent generated semigroup IG(E),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {IG}}(E),$$\end{document} where E is the biordered set of idempotents of the endomorphism monoid EndA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {End}}\mathbf {A}$$\end{document} of an independence algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {A}$$\end{document}, in the case where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {A}$$\end{document} has no constants and has finite rank n. It is shown that when n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} the maximal subgroup of IG(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {IG}}(E)$$\end{document} containing a rank 1 idempotent ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is isomorphic to the corresponding maximal subgroup of EndA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {End}}\mathbf {A}$$\end{document} containing ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. The latter is the group of all unary term operations of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {A}$$\end{document}. Note that the class of independence algebras with no constants includes sets, free group acts and affine algebras.
引用
收藏
页码:535 / 553
页数:18
相关论文
共 42 条
[1]  
Araújo J(2005)An elementary proof that every singular matrix is a product of idempotent matrices Amer. Math. Monthly 112 641-645
[2]  
Mitchell JD(2009)Subgroups of free idempotent generated semigroups need not be free J. Algebra 321 3026-3042
[3]  
Brittenham M(2000)Independence algebras J. London Math. Soc. 61 321-334
[4]  
Margolis SW(1995)Rewriting a semigroup presentation Int. J. Algebra Comput. 5 81-103
[5]  
Meakin J(2015)Free idempotent generated semigroups and endomorphism monoids of free J. Algebra 429 133-176
[6]  
Cameron P(1968)-acts Can. Math. Bull. 11 283-284
[7]  
Szabó C(2014)Note on a theorem on singular matrices Trans. Am. Math. Soc. 366 419-455
[8]  
Campbell CM(2013)Maximal subgroups of free idempotent generated semigroups over the full linear monoid Int. J. Algebra Comput. 23 573-581
[9]  
Robertson EF(1985)Every group is a maximal subgroup of the free idempotent generated semigroup over a band J. Algebra 96 581-591
[10]  
Ruškuc N(1967)Biordered sets come from semigroups Glasgow Math. J. 8 118-122