Automatic Lung Cancer Segmentation in [18F]FDG PET/CT Using a Two-Stage Deep Learning Approach

被引:0
|
作者
Junyoung Park
Seung Kwan Kang
Donghwi Hwang
Hongyoon Choi
Seunggyun Ha
Jong Mo Seo
Jae Seon Eo
Jae Sung Lee
机构
[1] Seoul National University College of Engineering,Department of Electrical and Computer Engineering
[2] Seoul National University College of Medicine,Department of Nuclear Medicine
[3] Seoul National University College of Medicine,Department of Biomedical Sciences
[4] Seoul National University,Artificial Intelligence Institute
[5] Brightonix Imaging Inc.,Division of Nuclear Medicine, Department of Radiology, Seoul St Mary’s Hospital
[6] The Catholic University of Korea,Department of Nuclear Medicine
[7] Korea University Guro Hospital,Institute of Radiation Medicine, Medical Research Center
[8] Seoul National University College of Medicine,undefined
来源
Nuclear Medicine and Molecular Imaging | 2023年 / 57卷
关键词
Lung cancer; Deep learning; Segmentation; PET/CT;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:86 / 93
页数:7
相关论文
共 50 条
  • [1] Automatic Lung Cancer Segmentation in [18F]FDG PET/CT Using a Two-Stage Deep Learning Approach
    Park, Junyoung
    Kang, Seung Kwan
    Hwang, Donghwi
    Choi, Hongyoon
    Ha, Seunggyun
    Seo, Jong Mo
    Eo, Jae Seon
    Lee, Jae Sung
    NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 57 (02) : 86 - 93
  • [2] An interpretable deep learning approach for lesion detection and segmentation on whole-body [18F]FDG PET/CT
    Dirks, Ine
    Keyaerts, Marleen
    Neyns, Bart
    Vandemeulebroucke, Jef
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [3] An [18F]FDG-PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients
    David Wallis
    Michaël Soussan
    Maxime Lacroix
    Pia Akl
    Clément Duboucher
    Irène Buvat
    European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49 : 881 - 888
  • [4] An [18F]FDG-PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients
    Wallis, David
    Soussan, Michael
    Lacroix, Maxime
    Akl, Pia
    Duboucher, Clement
    Buvat, Irene
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (03) : 881 - 888
  • [5] [18F]FDG PET/CT outperforms [18F]FDG PET/MRI in differentiated thyroid cancer
    Vrachimis, Alexis
    Burg, Matthias Christian
    Wenning, Christian
    Allkemper, Thomas
    Weckesser, Matthias
    Schaefers, Michael
    Stegger, Lars
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 (02) : 212 - 220
  • [6] [18F]FDG PET/CT outperforms [18F]FDG PET/MRI in differentiated thyroid cancer
    Alexis Vrachimis
    Matthias Christian Burg
    Christian Wenning
    Thomas Allkemper
    Matthias Weckesser
    Michael Schäfers
    Lars Stegger
    European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43 : 212 - 220
  • [7] Lesion segmentation on 18F-fluciclovine PET/CT images using deep learning
    Wang, Tonghe
    Lei, Yang
    Schreibmann, Eduard
    Roper, Justin
    Liu, Tian
    Schuster, David M.
    Jani, Ashesh B.
    Yang, Xiaofeng
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [8] AI-based detection of lung lesions in [18F]FDG PET-CT from lung cancer patients
    Borrelli, Pablo
    Ly, John
    Kaboteh, Reza
    Ulen, Johannes
    Enqvist, Olof
    Traegardh, Elin
    Edenbrandt, Lars
    EJNMMI PHYSICS, 2021, 8 (01)
  • [9] AI-based detection of lung lesions in [18F]FDG PET-CT from lung cancer patients
    Pablo Borrelli
    John Ly
    Reza Kaboteh
    Johannes Ulén
    Olof Enqvist
    Elin Trägårdh
    Lars Edenbrandt
    EJNMMI Physics, 8
  • [10] [18F]FDG PET/CT Integration in Evaluating Immunotherapy for Lung Cancer: A Clinician's Practical Approach
    Brezun, Juliette
    Aide, Nicolas
    Peroux, Evelyne
    Lamboley, Jean-Laurent
    Gutman, Fabrice
    Lussato, David
    Helissey, Carole
    DIAGNOSTICS, 2024, 14 (18)