Optimal Order Error Estimates for Discontinuous Galerkin Methods for the Wave Equation

被引:0
作者
Weimin Han
Limin He
Fei Wang
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] University of Iowa,Department of Mathematics and Program in Applied Mathematical and Computational Sciences
[3] Inner Mongolia University of Science and Technology,School of Science
来源
Journal of Scientific Computing | 2019年 / 78卷
关键词
Discontinuous Galerkin methods; Fully discrete approximation; Wave equation; Optimal order error estimates; 65N30; 49J40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we derive optimal order error estimates for spatially semi-discrete and fully discrete schemes to numerically solve the second-order wave equation. The numerical schemes are constructed with the discontinuous Galerkin (DG) discretization for the spatial variable and the centered second-order finite difference approximation for the temporal variable. Under appropriate regularity assumptions on the solution, the schemes are shown to enjoy the optimal order error bounds in terms of both the spatial mesh-size and the time-step. In Grote and Schötzau (J Sci Comput 40:257–272, 2009), a fully discrete DG scheme is studied with an explicit finite difference temporal discretization where a CFL condition is required on the mesh-size and the time-step, and optimal order error estimates are derived in the L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega )$$\end{document}-norm. In comparison, for our fully discrete DG schemes, we do not require a CFL condition on the mesh-size and the time-step, and our optimal order error estimates are derived for the H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(\Omega )$$\end{document}-like norm and the L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega )$$\end{document} norm. Numerical simulation results are reported to illustrate theoretically predicted convergence orders in the H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(\Omega )$$\end{document} and L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega )$$\end{document} norms.
引用
收藏
页码:121 / 144
页数:23
相关论文
共 65 条
[1]  
Abraham DS(2018)A correction function method for the wave equation with interface jump conditions J. Comput. Phys. 353 281-299
[2]  
Marques AN(1982)An interior penalty finite element method with discontinuous elements SIAM J. Numer. Anal. 19 742-760
[3]  
Nave J-C(2002)Unified analysis of discontinuous Galerkin methods for elliptic problems SIAM J. Numer. Anal. 39 1749-1779
[4]  
Arnold DN(1976)Error estimates for finite element methods for second-order hyperbolic equations SIAM J. Numer. Anal. 13 564-576
[5]  
Arnold DN(1997)A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations J. Comput. Phys. 131 267-279
[6]  
Brezzi F(2000)An analysis of new mixed finite elements for the approximation of wave propagation problems SIAM J. Numer. Anal. 37 1053-1084
[7]  
Cockburn B(1996)-Version discontinuous Galerkin methods for hyperbolic conservation laws Comput. Methods Appl. Mech. Eng. 133 259-286
[8]  
Marini LD(2018)Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials J. Comput. Phys. 354 26-42
[9]  
Baker GA(2002)Optimal a priori error estimates for the Math. Comput. 71 455-478
[10]  
Bassi F(2005)-version of the local discontinuous Galerkin method for convection–diffusion problems Math. Comput. 74 1067-1095