Reduction and regularization of the Kepler problem

被引:0
作者
J. C. van der Meer
机构
[1] Technische Universiteit Eindhoven,Faculteit Wiskunde en Informatica
来源
Celestial Mechanics and Dynamical Astronomy | 2021年 / 133卷
关键词
Geometric reduction; Harmonic oscillator; Kepler problem; Regularization; 53D20; 37J15; 70H05; 70H33;
D O I
暂无
中图分类号
学科分类号
摘要
The KS regularization connects the dynamics of the harmonic oscillator to the dynamics of bounded Kepler orbits. Using orbit space reduction, it can be shown that reduced harmonic oscillator orbits can be identified with re-parametrized Kepler orbits by factorizing the KS map as reduction mapping followed by a chart on the reduced phase space. In this note, we will show that also other regularization maps can be obtained this way. In particular, we will show how Moser’s regularization and Ligon–Schaaf regularization are related to KS-regularization. All regularizations are a result of choosing the right invariants to represent the reduced phase space, which is isomorphic to T+S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^+S^3$$\end{document}, and a chart on this reduced phase space. We show how this opens the way to directly reduce the KS transformed Kepler system and find other regularization maps that are valid for all values of the Keplerian energy similar to Ligon–Schaaf regularization.
引用
收藏
相关论文
共 32 条
[1]  
Breiter S(2017)Kustaanheimo–Stiefel transformation with an arbitrary defining vector Celest. Mech. Dyn. Astron. 128 323-342
[2]  
Langner K(1970)The main problem of artificial satellite theory for small and moderate eccentricities Celest. Mech. 2 166-206
[3]  
Deprit A(1994)Linearization: Laplace vs Stiefel Celest. Mech. Dyn. Astron. 58 151-201
[4]  
Rom A(1950)Generalized hamiltonian dynamics Canadian J. Math. 2 129-148
[5]  
Deprit A(2010)Normalization and global analysis of the hydrogen atom Rev. Mod. Phys. 82 2099-2154
[6]  
Elipe A(2018)Alternative angle-based approach to the KS-Map. An interpretation through symmetry and reduction J. Geometric Mech. 10 359-372
[7]  
Ferrer S(2012)On the regularization of the Kepler problem J. Symplectic Geom. 10 463-473
[8]  
Dirac P(1982)On the regularization of the Kepler problem Commun. Math. Phys. 84 133-152
[9]  
Efstathou K(1985)A Group Theoretical Approach to a Certain Class of Perturbations of the Kepler Problem Arch. Ration. Mech. Anal. 91 55-82
[10]  
Sadovskii DA(1965)Perturbation theory of Kepler motion based on spinor regularization J. für die reine und angewandte Mathematik 218 204-219