Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue

被引:0
|
作者
Jesse M. Gray
David S. Karow
Hang Lu
Andy J. Chang
Jennifer S. Chang
Ronald E. Ellis
Michael A. Marletta
Cornelia I. Bargmann
机构
[1] The University of California,Howard Hughes Medical Institute and Departments of Anatomy and Biochemistry and Biophysics
[2] University of Michigan,Graduate Program in Cellular and Molecular Biology
[3] University of Michigan,Department of Chemistry
[4] UMDNJ School of Osteopathic Medicine,Departments of Chemistry and Molecular and Cell Biology
[5] the University of California,The Division of Physical Biosciences
[6] Lawrence Berkeley National Lab,undefined
来源
Nature | 2004年 / 430卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Specialized oxygen-sensing cells in the nervous system generate rapid behavioural responses to oxygen. We show here that the nematode Caenorhabditis elegans exhibits a strong behavioural preference for 5–12% oxygen, avoiding higher and lower oxygen levels. 3′,5′-cyclic guanosine monophosphate (cGMP) is a common second messenger in sensory transduction and is implicated in oxygen sensation. Avoidance of high oxygen levels by C. elegans requires the sensory cGMP-gated channel tax-2/tax-4 and a specific soluble guanylate cyclase homologue, gcy-35. The GCY-35 haem domain binds molecular oxygen, unlike the haem domains of classical nitric-oxide-regulated guanylate cyclases. GCY-35 and TAX-4 mediate oxygen sensation in four sensory neurons that control a naturally polymorphic social feeding behaviour in C. elegans. Social feeding and related behaviours occur only when oxygen exceeds C. elegans' preferred level, and require gcy-35 activity. Our results suggest that GCY-35 is regulated by molecular oxygen, and that social feeding can be a behavioural strategy for responding to hyperoxic environments.
引用
收藏
页码:317 / 322
页数:5
相关论文
共 50 条
  • [1] Oxygen sensation and social feeding mediated by a C-elegans guanylate cyclase homologue
    Gray, JM
    Karow, DS
    Lu, H
    Chang, AJ
    Chang, JS
    Ellis, RE
    Marletta, MA
    Bargmann, CI
    NATURE, 2004, 430 (6997) : 317 - 322
  • [2] Characterization of the C. elegans erlin homologue
    Hoegg, Maja B.
    Robbins, Stephen M.
    McGhee, James D.
    BMC CELL BIOLOGY, 2012, 13
  • [3] Characterization of the C. elegans erlin homologue
    Maja B Hoegg
    Stephen M Robbins
    James D McGhee
    BMC Cell Biology, 13
  • [4] Characterization of auditory sensation in C. elegans
    Can Wang
    Elizabeth ARonan
    Adam JIliff
    Rawan AlEbidi
    Panagiota Kitsopoulos
    Karl Grosh
    Jianfeng Liu
    XZShawn Xu
    Biophysics Reports, 2024, 10 (06) : 351 - 363
  • [5] Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans
    Hallem, Elissa A.
    Spencer, W. Clay
    McWhirter, Rebecca D.
    Zeller, Georg
    Henz, Stefan R.
    Raetsch, Gunnar
    Miller, David M., III
    Horvitz, H. Robert
    Sternberg, Paul W.
    Ringstad, Niels
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (01) : 254 - 259
  • [6] Collective feeding in C. elegans
    Schumacher, L. J.
    Ding, S.
    Brown, A. E. X.
    Endres, R. G.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2017, 46 : S74 - S74
  • [7] Determining the biomechanics of touch sensation in C. elegans
    Elmi, Muna
    Pawar, Vijay M.
    Shaw, Michael
    Wong, David
    Zhan, Haoyun
    Srinivasan, Mandayam A.
    SCIENTIFIC REPORTS, 2017, 7
  • [8] Determining the biomechanics of touch sensation in C. elegans
    Muna Elmi
    Vijay M. Pawar
    Michael Shaw
    David Wong
    Haoyun Zhan
    Mandayam A. Srinivasan
    Scientific Reports, 7
  • [9] Alkaline pH sensation mediated by a Caenorhabditis elegans transmembrane guanylyl cyclase
    Murayama, Takashi
    Fujiwara, Mayuki
    Takayama, Jun
    Maruyama, Ichiro
    NEUROSCIENCE RESEARCH, 2010, 68 : E386 - E386
  • [10] The C. elegans HERG homologue controls pharyngeal pumping
    Petersen, CI
    Stepanovic, SZ
    McFarland, TR
    Balser, JR
    BIOPHYSICAL JOURNAL, 2002, 82 (01) : 249A - 249A