Balanced metrics on the Fock–Bargmann–Hartogs domains

被引:0
作者
Enchao Bi
Zhiming Feng
Zhenhan Tu
机构
[1] Wuhan University,School of Mathematics and Statistics
[2] Leshan Normal University,School of Mathematical and Information Sciences
来源
Annals of Global Analysis and Geometry | 2016年 / 49卷
关键词
Balanced metrics; Bergman kernels; Fock–Bargmann–Hartogs domains; Kähler metrics; 32A25; 32M15; 32Q15;
D O I
暂无
中图分类号
学科分类号
摘要
The Fock–Bargmann–Hartogs domain Dn,m(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{n,m}(\mu )$$\end{document} (μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document}) in Cn+m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^{n+m}$$\end{document} is defined by the inequality ‖w‖2<e-μ‖z‖2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert w\Vert ^2<e^{-\mu \Vert z\Vert ^2},$$\end{document} where (z,w)∈Cn×Cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(z,w)\in \mathbb {C}^n\times \mathbb {C}^m$$\end{document}, which is an unbounded non-hyperbolic domain in Cn+m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^{n+m}$$\end{document}. This paper introduces a Kähler metric αg(μ;ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha g(\mu ;\nu )$$\end{document}(α>0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha >0)$$\end{document} on Dn,m(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{n,m}(\mu )$$\end{document}, where g(μ;ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(\mu ;\nu )$$\end{document} is the Kähler metric associated with the Kähler potential Φ(z,w):=μν‖z‖2-ln(e-μ‖z‖2-‖w‖2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi (z,w):=\mu \nu {\Vert z\Vert }^{2}-\ln (e^{-\mu {\Vert z\Vert }^{2}}-\Vert w\Vert ^2)$$\end{document} (ν>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu >-1$$\end{document}) on Dn,m(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{n,m}(\mu )$$\end{document}. The purpose of this paper is twofold. Firstly, we obtain an explicit formula for the Bergman kernel of the weighted Hilbert space of square integrable holomorphic functions on (Dn,m(μ),g(μ;ν))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D_{n,m}(\mu ), g(\mu ;\nu ))$$\end{document} with the weight exp{-αΦ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp \{-\alpha \Phi \}$$\end{document} for α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}. Secondly, using the explicit expression of the Bergman kernel, we obtain the necessary and sufficient condition for the metric αg(μ;ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha g(\mu ;\nu )$$\end{document}(α>0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha >0)$$\end{document} on the domain Dn,m(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{n,m}(\mu )$$\end{document} to be a balanced metric. So, we obtain the existence of balanced metrics for a class of Fock–Bargmann–Hartogs domains.
引用
收藏
页码:349 / 359
页数:10
相关论文
共 39 条
[1]  
Arezzo C(2004)Moment maps, scalar curvature and quantization of Kahler manifolds Commun. Math. Phys. 243 543-559
[2]  
Loi A(1974)Quantization Math. USSR Izvestiya. 8 1109-1163
[3]  
Berezin FA(1990)Quantization of Kähler manifolds. I: geometric interpretation of Berezin’s quantization J. Geom. Phys. 7 45-62
[4]  
Cahen M(1994)An explicit computation of the Bergman kernel function J. Geom. Anal. 4 23-34
[5]  
Gutt S(2001)Scalar curvature and projective embeddings, I J. Differ. Geom. 59 479-522
[6]  
Rawnsley J(1996)Berezin quantization and reproducing kernels on complex domains Trans. Am. Math. Soc. 348 411-479
[7]  
D’Angelo JP(2000)A Forelli–Rudin construction and asymptotics of weighted Bergman kernels J. Funct. Anal. 177 257-281
[8]  
Donaldson S(2000)The asymptotics of a Laplace integral on a Kähler manifold J. Reine Angew. Math. 528 1-39
[9]  
Engliš M(2006)Weighted Bergman kernels and balanced metrics RIMS Kokyuroku 1487 40-54
[10]  
Engliš M(2014)On canonical metrics on Cartan–Hartogs domains Math. Z. 278 301-320