On the Dirichlet problem for the Schrödinger equation in the upper half-space

被引:0
作者
Bo Li
Tianjun Shen
Jian Tan
Aiting Wang
机构
[1] Jiaxing University,College of Data Science
[2] Tianjin University,Center for Applied Mathematics
[3] Nanjing University of Posts and Telecommunications,School of Science
[4] Qinghai Minzu University,School of Mathematics and Statistics
来源
Analysis and Mathematical Physics | 2023年 / 13卷
关键词
Boundary value problem; Elliptic equation; Morrey function; Regularity; Variable exponent; Primary 35J25; Secondary 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
A well-known result of Stein-Weiss in 1971 said that a harmonic function, defined on the upper half-space, is the Poisson integral of a Lebesgue function if and only if it is also a Lebesgue function uniformly in the time variable. Under a metric measure space setting, we show that a solution to the elliptic equation with a non-negative potential, defined on the upper half-space, is in the essentially-bounded-Morrey space with variable exponent if and only if it can be represented as the Poisson integral of a variable Morrey function, where the doubling property, the pointwise upper bound on the heat kernel, the mean value property and the Liouville property are assumed.
引用
收藏
相关论文
共 107 条
[1]  
Adamowicz T(2015)Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces Math. Scand. 116 5-22
[2]  
Harjulehto P(2008)Maximal and potential operators in variable exponent Morrey spaces Georgian Math. J. 15 195-208
[3]  
Hästö P(2018)Maximal function characterizations for new local Hardy-type spaces on spaces of homogeneous type Trans. Am. Math. Soc. 370 7229-7292
[4]  
Almeida A(2021)Comparison of Morrey spaces and Nikol’skii spaces Eurasian Math. J. 12 9-20
[5]  
Hasanov J(2022)Gaussian estimates for heat kernels of higher order Schrödinger operators with potentials in generalized Schechter classes J. Lond. Math. Soc. (2) 106 2136-2192
[6]  
Samko S(2017)Carleson measures, BMO spaces and balayages associated to Schrödinger operators Sci. China Math. 60 2077-2092
[7]  
Bui T(2020)Sharp endpoint Math. Ann. 378 667-702
[8]  
Duong X(2008) estimates for Schrödinger groups Proc. Lond. Math. Soc. (3) 96 507-544
[9]  
Ly F(2018)Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem Stud. Math. 242 109-139
[10]  
Burenkov V(2014)The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type Indiana Univ. Math. J. 63 447-493