On the lower bounds of the partial sums of a Dirichlet series

被引:0
作者
G. Mora
E. Benítez
机构
[1] Universidad de Alicante,
[2] Departamento de Matemáticas,undefined
[3] Facultad de Ciencias II,undefined
[4] Universidad Nacional de Asunción,undefined
[5] Facultad de Ciencias Exactas y Naturales.,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2022年 / 116卷
关键词
Dirichlet series; Zeros of partial sums of Dirichlet series; Henry lower bound; 30B50; 11M41; 30D05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper it is shown that for the ordinary Dirichlet series, ∑j=0∞αj(j+1)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{j=0}^{\infty }\frac{\alpha _{j}}{(j+1)^{s}}$$\end{document}, α0=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{0}=1$$\end{document}, of a class, say P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document}, that contains in particular the series that define the Riemann zeta and the Dirichlet eta functions, there exists limn→∞ρn/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }\rho _{n}/n$$\end{document}, where the ρn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{n}$$\end{document}’s are the Henry lower bounds of the partial sums of the given Dirichlet series, Pn(s)=∑j=0n-1αj(j+1)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}(s)=\sum _{j=0}^{n-1}\frac{\alpha _{j}}{(j+1)^{s}}$$\end{document}, n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2$$\end{document}. Likewise it is given an estimate of the above limit. For the series of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} having positive coefficients it is shown the existence of the limn→∞aPn(s)/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }a_{P_{n}(s)}/n$$\end{document}, where the aPn(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{P_{n}(s)}$$\end{document}’s are the lowest bounds of the real parts of the zeros of the partial sums. Furthermore it has been proved that limn→∞aPn(s)/n=limn→∞ρn/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }a_{P_{n}(s)}/n=\lim _{n\rightarrow \infty }\rho _{n}/n$$\end{document}.
引用
收藏
相关论文
共 16 条
  • [1] Borwein P(2007)Zeros of partial sums of the Riemann zeta-function Exp. Math. 16 21-39
  • [2] Fee G(1965)Zeros of Exponential Sums Proc. Am. Math. Soc. 16 84-89
  • [3] Ferguson R(2010)Zeros of Partial Sums of the Riemann Zeta-Function Int. Math. Res. Not. 2010 1775-1791
  • [4] van der Waall A(1974)Linear autonomous neutral functional differential equations J. Differ. Equ. 15 106-128
  • [5] Dickson DG(1973)Asymptotic formula for the coordinates of the zeros of sections of the zeta function, Proc. Nat. Acad. Sci. USA 70 985-987
  • [6] Gonek SM(2001), near Period. Math. Hungar. 43 199-214
  • [7] Ledoan AH(2015)Mean values of multiplicative functions J. Math. Anal. Appl. 427 428-439
  • [8] Henry D(2021)An estimate of the lower bound of the real parts of the zeros of the partial sums of the Riemann zeta function Trans. Am. Math. Soc. 374 643-661
  • [9] Levinson N(1972)Zeros of Dirichlet polynomials Crelles J 1972 170-189
  • [10] Montgomery HL(1927)The lowest zero of sections of the zeta function J. Lond. Math. Soc. 2 66-69