On unbounded perturbations of semigroups: Compactness and norm continuity

被引:0
作者
Miao Li
Xiaohui Gu
Falun Huang
机构
[1] Huazhong University of Science and Technology,Department of Mathematics
[2] Sichuan University,Department of Mathematics
来源
Semigroup Forum | 2002年 / 65卷
关键词
Hilbert Space; Banach Space; Essential Spectrum; Continuous Semigroup; Transport Theory;
D O I
暂无
中图分类号
学科分类号
摘要
Let A and B be the generators of strongly continuous semigroups (S(t))t ≥ 0 and (T(t))t ≥ 0, respectively. Denote by Δ (t) = T(t) − S(t). We show that if Δ(t) is norm continuous for t > 0 and R(λ,B) − R(λ,A) is compact for λ ∈ ρ(A)⋂ ρ(B) , then Δ(t) is compact. The converse is true if the perturbing operator is of Miyadera-Voigt-type. A characterization of norm continuity of Δ(t) in terms of the resolvents of the generators is given in Hilbert spaces.
引用
收藏
页码:58 / 70
页数:12
相关论文
empty
未找到相关数据