共 50 条
Forecasting with unequally spaced data by a functional principal component approach
被引:0
|作者:
Ana M. Aguilera
Francisco A. Ocaña
Mariano J. Valderrama
机构:
[1] Universidad de Granada,Departamento de Estadística e Investigación Operativa Facultad de Farmacia
[2] Universidad de Granada,Dpto. de Estadística e I.O., Facultad de Ciencias
来源:
Test
|
1999年
/
8卷
关键词:
Karhunen-Loève expansion;
least-squares linear prediction;
orthogonal projection;
principal components;
60G25;
60G12;
65F15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The Principal Component Regression model of multiple responses is extended to forccast a continuous-time stochastic process. Orthogonal projection on a subspace of trigonometric functions is applied in order to estimate the principal components using discrete-time observations from a sample of regular curves. The forecasts provided by this approach are compared with classical principal component regression on simulated data.
引用
收藏
页码:233 / 253
页数:20
相关论文