Forecasting with unequally spaced data by a functional principal component approach

被引:0
|
作者
Ana M. Aguilera
Francisco A. Ocaña
Mariano J. Valderrama
机构
[1] Universidad de Granada,Departamento de Estadística e Investigación Operativa Facultad de Farmacia
[2] Universidad de Granada,Dpto. de Estadística e I.O., Facultad de Ciencias
来源
Test | 1999年 / 8卷
关键词
Karhunen-Loève expansion; least-squares linear prediction; orthogonal projection; principal components; 60G25; 60G12; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
The Principal Component Regression model of multiple responses is extended to forccast a continuous-time stochastic process. Orthogonal projection on a subspace of trigonometric functions is applied in order to estimate the principal components using discrete-time observations from a sample of regular curves. The forecasts provided by this approach are compared with classical principal component regression on simulated data.
引用
收藏
页码:233 / 253
页数:20
相关论文
共 50 条