Modeling the Time Delay Problem of Galactic Cosmic Ray Flux in Solar Cycles 21 and 23

被引:0
作者
M. Siluszyk
K. Iskra
机构
[1] Military University of Aviation,
[2] Siedlce University of Natural Sciences and Humanities,undefined
来源
Solar Physics | 2020年 / 295卷
关键词
Parker transport equation; Galactic cosmic ray flux; Galactic rays – solar activity; Delay times; Interplanetary magnetic field; Turbulence;
D O I
暂无
中图分类号
学科分类号
摘要
We present a 2-dimensional time-dependent simulation based on Parker’s transport equation (PTE) describing the propagation of energetic astroparticles – cosmic rays (CR) in the heliosphere. PTE is a second order partial differential equation containing four major processes: diffusion, convection, drift, and adiabatic cooling responsible for modulation of the CR flux in the heliosphere. We implement in the numerical simulation, a few physical parameters as the tilt angle, δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta $\end{document}, of the heliospheric current sheet (HCS), module, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B$\end{document}, of the interplanetary magnetic field (IMF), and variations of drift effect of the CR particles with solar activity (SA). Our approach is the implementation of two independent parameters (proxies), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document} and ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu $\end{document}. The parameters γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document} and ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu $\end{document} are calculated from various independent sources, γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document}, from neutron monitors (NM) daily data, and ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu $\end{document}, using the IMF hourly data. The solutions of PTE obtained from our numerical model are compared with the variations of the CR flux recorded by NMs. We prove the existence of a varying delay time (DT) between the changes of galactic cosmic ray (GCR) intensity and the parameters characterizing SA. Based on our investigation, we obtained different DTs in Solar Cycles 21 and 23. We conclude that the calculated DTs, after comparison with the observed DTs, are useful parameters for the study of GCR transport in the heliosphere.
引用
收藏
相关论文
共 79 条
  • [1] Alania M.V.(2002)Stochastic variations of GCRs Acta Phys. Pol. B 33 1149-undefined
  • [2] Alania M.V.(2003)Experimental and theoretical investigations of the 11-year variation of galactic cosmic rays Adv. Space Res. 32 2961-undefined
  • [3] Iskra K.(2008)On the new index of the long-period modulation of the galactic cosmic rays intensity Acta Phys. Pol. B 39 267-undefined
  • [4] Siluszyk M.(2008)New index of long-term variations of galactic cosmic ray intensity Adv. Space Res. 41 1203-undefined
  • [5] Alania M.V.(2010)On relation of the long period galactic cosmic rays intensity variations with the interplanetary magnetic field turbulence Adv. Space Res. 45 613-undefined
  • [6] Iskra K.(2001)The role of drift on the diurnal anisotropy and on temporal changes in the energy spectra of the 11-year variation for galactic cosmic rays Adv. Space Res. 27 549-undefined
  • [7] Siluszyk M.(2003)Transport of charged particles in the heliosphere: theory Adv. Space Res. 32 1-undefined
  • [8] Alania M.V.(1993)Cosmic ray modulation and the distant heliospheric magnetic field: Voyager 1 and 2 observation from 1986 through 1989 J. Geophys. Res. 98 1-undefined
  • [9] Iskra K.(2004)Limitations of the force field equation to describe cosmic ray modulation J. Geophys. Res. 109 250-undefined
  • [10] Siluszyk M.(2018)Quasi-periodicities in cosmic rays and time lag with the solar activity at a middle latitude neutron monitor: 1982–2017 Astrophys. Space Sci. 363 577-undefined