共 108 条
- [1] Audet C(2021)Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates Comput. Optim. Appl. 79 1-34
- [2] Dzahini KJ(2022)Zeroth-order nonconvex stochastic optimization: handling constraints, high dimensionality, and saddle points Found. Comput. Math. 22 35-76
- [3] Kokkolaras M(2019)Derivative-free optimization of noisy functions via quasi-Newton methods SIAM J. Optim. 29 965-993
- [4] Le Digabel S(2022)A theoretical and empirical comparison of gradient approximations in derivative-free optimization Found. Comput. Math. 22 507-560
- [5] Balasubramanian K(2020)A robust multi-batch l-BFGS method for machine learning Optim. Methods Softw. 35 191-219
- [6] Ghadimi S(2019)Convergence rate analysis of a stochastic trust-region method via supermartingales INFORMS J. Optim. 1 92-119
- [7] Berahas AS(1954)Multidimensional stochastic approximation methods Ann. Math. Stat. 25 737-744
- [8] Byrd RH(2018)Adaptive sampling strategies for stochastic optimization SIAM J. Optim. 28 3312-3343
- [9] Nocedal J(2018)Exact and inexact subsampled Newton methods for optimization IMA J. Numer. Anal. 39 545-578
- [10] Berahas AS(2021)Optimization and supervised machine learning methods for fitting numerical physics models without derivatives J. Phys. G Nucl. Part. Phys. 48 223-311