Dynamics of symplectic fluids and point vortices

被引:0
作者
Boris Khesin
机构
[1] University of Toronto,Department of Mathematics
来源
Geometric and Functional Analysis | 2012年 / 22卷
关键词
Euler Equation; Symplectic Manifold; Poisson Structure; Symplectic Structure; Point Vortex;
D O I
暂无
中图分类号
学科分类号
摘要
We present the Hamiltonian formalism for the Euler equation of symplectic fluids, introduce symplectic vorticity, and study related invariants. In particular, this allows one to extend Ebin’s long-time existence result for geodesics on the symplectomorphism group to metrics not necessarily compatible with the symplectic structure. We also study the dynamics of symplectic point vortices, describe their symmetry groups and integrability.
引用
收藏
页码:1444 / 1459
页数:15
相关论文
共 13 条
  • [1] Arnold V.I.(1966)Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits Annales de L’Institut Fourier. 16 316-361
  • [2] Ebin D.G.(2012)Geodesics on the symplectomorphism group. Geometric and Functional Analysis. 1 202-212
  • [3] Ebin D.G.(1970)Groups of diffeomorphisms and the motion of an incompressible fluid Annals of Mathematics. 2 102-163
  • [4] Marsden J.(1994)Steady fluid flows and symplectic geometry Journal of Geometry and Physics. 14 195-210
  • [5] Ginzburg V.(2012)Symplectic structures and dynamics on vortex membranes Moscow Mathematical Journal. 2 413-434
  • [6] Khesin B.(1999)Vortex motion on surfaces with constant curvature Proceedings of the Royal Society of London Series A. 1981 245-259
  • [7] Khesin B.(2001)A new solution to the three-body problem. Notices of the American Mathematical Society. 5 471-481
  • [8] Kimura Y.(1984)Invariants et dégénérescence symplectique de l’équation d’Euler des fluides parfaits incompressibles. Comptes Rendus de l’Académie des Sciences, Paris Série I. Mathématique. 14 349-352
  • [9] Montgomery R.(1986)A bi-invariant metric on a group of symplectic diffeomorphisms and the equation (∂/∂t)ΔF = {ΔF,F} Siberian Mathematical Journal 1 120-126
  • [10] Serre D.(1990)Connections of Berry and Hannay type for moving lagrangian submanifolds Advances in Mathematics. 82 133-159