Separable torsion-free modules with UA-rings of endomorphisms

被引:1
作者
Chistyakov D.S. [1 ]
机构
[1] Moscow Pedagogical State University, ul. Malaya Pirogovskaya 1, Str. 1, Moscow
关键词
ring with unique addition; torsion-free separable module;
D O I
10.3103/S1066369X15060079
中图分类号
学科分类号
摘要
In this paper we study a property of unique addition for an endomorphisms ring of torsion-free separable module over commutative Dedekind ring. © 2015, Allerton Press, Inc.
引用
收藏
页码:43 / 48
页数:5
相关论文
共 11 条
[1]  
Fuchs P., Maxson C.J., Pilz G., On Rings for which Homogeneous Maps are Linear, Proc. Amer. Math. Soc., 112, 1, pp. 1-7, (1991)
[2]  
Mikhalev A.V., Multiplicative Classification of Associative Rings, Math. USSR, Sb., 63, 1, pp. 205-218, (1989)
[3]  
Stephenson W., Unique Addition Rings, Can. J. Math., 21, 6, pp. 1455-1461, (1969)
[4]  
Neluis C.-F., Ringe mit Eindentinger Addition, (1974)
[5]  
van der Merwe A.B., Unique Addition Modules, Comm. Algebra, 27, 9, pp. 4103-4115, (1999)
[6]  
Lyubimtsev O.V., Periodic Abelian Groups with UA-Rings of Endomorphisms, Math. Notes, 70, 5-6, pp. 667-672, (2001)
[7]  
Lyubimtsev O.V., Separable Torsion-Free Abelian Groups with UA-Rings of Endomorphisms, Fundam. Prikl. Mat., 4, pp. 1419-1422, (1998)
[8]  
Lyubimtsev O.V., Chistyakov D.S., Abelian Groups as UA-Modules over the Ring Z, Math. Notes, 87, 3, pp. 380-383, (2010)
[9]  
Chistyakov D.S., Abelian Groups as U A-Modules over their Endomorphism Ring, Math. Notes, 91, 5-6, pp. 878-884, (2012)
[10]  
Chistyakov D.S., Homogeneous Maps of Abelian Groups, Russian Mathematics (Iz. VUZ), 58, 2, pp. 51-57, (2014)