Minimum Area of a Set of Constant Width in the Hyperbolic Plane

被引:0
作者
Paulo Ventura Ara
机构
[1] Faculdade de Ci do Porto,Centro de Matem
关键词
Constant width; Reuleaux triangle; hyperbolic plane.;
D O I
10.1023/A:1004920201363
中图分类号
学科分类号
摘要
We prove that, in the hyperbolic plane, the Reuleaux triangle has smaller area than any other set of the same constant width.
引用
收藏
页码:41 / 53
页数:12
相关论文
共 5 条
[1]  
Besicovitch A. S.(1963)Minimum area of a set of constant width, in convexity (Seattle 1961) Proceedings of Symposia in Pure Mathematics VII 13-14
[2]  
Dekster B. V.(1992)Width and breadth for convex bodies in Riemannian manifolds Arch. Math 58 190-198
[3]  
Eggleston H. G.(1952)A proof of Blaschke's theorem on the Reuleaux triangle Quart. J. Math 3 296-297
[4]  
Santaló L. A.(1945)Note on convex curves on the hyperbolic plane Bull. Amer.Math. Soc. 51 405-412
[5]  
Wegner B.(1981)Einige Bemerkungen zur Geometrie transnormaler Mannigfaltigkeiten J. Differential Geom. 16 93-100