An Effective Finite Element Method with Shifted Fractional Powers Bases for Fractional Boundary Value Problems

被引:0
作者
Taibai Fu
Changfa Du
Yufeng Xu
机构
[1] Central South University,Powder Metallurgy Research Institute
[2] Central South University,School of Mathematics and Statistics, HNP
来源
Journal of Scientific Computing | 2022年 / 92卷
关键词
Fractional boundary value problem; Singularity; Shifted fractional powers; Finite element method; 26A33; 65J99; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an effective finite element method with shifted fractional powers bases is developed for fractional convection diffusion equations involving a Riemann–Liouville derivative of order α∈(3/2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (3/2,2)$$\end{document}. A Petrov-Galerkin variational formulation is constructed on the domain H~α-1(Ω)×H~1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{H}^{\alpha -1}(\Omega )\times \tilde{H}^{1}(\Omega )$$\end{document}, based on which the finite element approximation scheme is developed by employing shifted fractional power functions and continuous piecewise polynomials of degree up to m(m∈N+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m~(m\in \mathbb {N}^+)$$\end{document} for trial and test finite element spaces, respectively. The approximation property of trial finite element space and inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\inf $$\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sup $$\end{document} condition for discrete variational form are derived, which enables us to derive the error estimates in L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Omega )$$\end{document} and Hα-1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\alpha -1}(\Omega )$$\end{document} norms. Numerical examples are included to verify the theoretical findings and demonstrate an actual convergence rate of order α-1+m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -1+m$$\end{document}, where m equals to 1 or 2.
引用
收藏
相关论文
共 79 条
[1]  
Metzler R(2004)The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Phys. A: Math. Gen. 37 R161-R208
[2]  
Klafter J(2012)Analysis and approximation of nonlocal diffusion problems with volume constraints SIAM Rev. 54 667-696
[3]  
Du Q(2015)Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients Appl. Math. Comput. 257 381-397
[4]  
Gunzburger M(2012)Piecewise polynomial collocation for linear boundary value problems of fractional differential equations J. Comput. Appl. Math. 236 3349-3359
[5]  
Lehoucq RB(2019)Collocation methods for general riemann-liouville two-point boundary value problems Adv. Comput. Math. 45 897-928
[6]  
Zhou K(2015)Variational formulation of problems involving fractional order differential operators Math. Comput. 84 2665-2700
[7]  
Li Z(2016)Generalized Jacobi functions and their applications to fractional differential equations Math. Comput. 85 1603-1638
[8]  
Liu Y(2016)Effcient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations Appl. Numer. Math. 106 165-181
[9]  
Yamamoto M(2017)A hybrid spectral element method for fractional two-point boundary value problems Numer. Math. Theory Methods Appl. 10 437-464
[10]  
Pedas A(2018)Regularity of the solution to 1-D fractional order diffusion equations Math. Comput. 87 2273-2294