Singularly perturbed Dirichlet boundary-value problem for a stationary system in the linear elasticity theory

被引:0
作者
D. B. Davletov
机构
[1] Bashkir State University of Liberal Arts,
关键词
operator; boundary-value problem; singular perturbation; eigenelements;
D O I
10.3103/S1066369X08120025
中图分类号
学科分类号
摘要
We consider a singularly perturbed Dirichlet boundary-value problem for an elliptic operator of the linear elasticity theory in a bounded domain with a small cavity. The main result is the proof of the theorem about the convergence of eigenelements of the perturbed boundary-value problem to eigenelements of the corresponding limiting boundary-value problem, when the parameter ɛ which defines the diameter of the small cavity tends to zero.
引用
收藏
页码:4 / 12
页数:8
相关论文
共 6 条
[1]  
Samarskii A. A.(1948)The Influence of Clamping on Eigenfrequencies of Enclosed Volumes Sov. Phys. Dokl. 63 631-634
[2]  
Il’in A. M.(1977)A Boundary-Value Problem for Elliptic Second Order Equation in a Domain with a Narrow Slit. 2. Domain with a Small Hole Matem. Sborn. 103 265-284
[3]  
Maz’ya V. G.(1984)Asymptotic Expansions of the Eigenvalues of Boundary-Value Problems for the Laplace Operator in Domains with Small Holes Izv. Akad. Nauk SSSR 48 347-371
[4]  
Nazarov S. A.(1993)On Eigenfrequencies of Bodies with Thin Spikes I. Convergence and Estimates Matem. Zametki 54 10-21
[5]  
Plamenevskii B. A.(undefined)undefined undefined undefined undefined-undefined
[6]  
Gadyl’shin R. R.(undefined)undefined undefined undefined undefined-undefined