Towards a Characterization of Self-Similar Tilings in Terms of Derived Voronoï Tessellations

被引:0
作者
Natalie M. Priebe
机构
[1] Rensselaer Polytechnic Institute,Department of Mathematical Sciences
来源
Geometriae Dedicata | 2000年 / 79卷
关键词
tilings; self-similarity; Voronoi tessellations.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a technique for analyzing levels of hierarchy in a tiling \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}$$ \end{document} of Euclidean space is presented. Fixing a central configuration P of tiles in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}$$ \end{document}, a `derived Voronoï' tessellation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}$$ \end{document}P is constructed based on the locations of copies of P in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}$$ \end{document}. A family of derived Voronoï tilings \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}(\mathcal{T}{\text{)}}$$ \end{document} is formed by allowing the central configurations to vary through an infinite number of possibilities. The family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}(\mathcal{T}{\text{)}}$$ \end{document} will normally be an infinite one, but we show that for a self-similar tiling \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}$$ \end{document} it is finite up to similarity. In addition, we show that if the family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}(\mathcal{T}{\text{)}}$$ \end{document} is finite up to similarity, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}$$ \end{document} is pseudo-self-similar. The relationship between self-similarity and pseudo-self-similarity is not well understood, and this is the obstruction to a complete characterization of self-similarity via our method. A discussion and conjecture on the connection between the two forms of hierarchy for tilings is provided.
引用
收藏
页码:239 / 265
页数:26
相关论文
共 14 条
[1]  
Fisher A. M.(1993)Integer Cantor sets and an order-two ergodic theorem Ergodic Theory Dynam. Systems 13 45-64
[2]  
Godrè che C.(1992)A simple example of a non-Pisot tiling with five-fold symmetry J. Physique I 2 207-220
[3]  
Lanç on F.(1992)Self-replicating tilings Contemp. Math. 135 239-263
[4]  
Kenyon R.(1996)The construction of self-similar tilings Geom. Funct. Anal. 6 471-488
[5]  
Kenyon R.(1991)Global order from local sources Bull. Amer. Math. Soc. 25 335-364
[6]  
Radin C.(1995)Space tilings and substitutions Geom. Dedicata 55 257-264
[7]  
Radin C.(1995)Symmetry and tilings Notices Amer. Math. Soc. 42 26-31
[8]  
Radin C.(1992)Space tilings and local isomorphism Geom. Dedicata 42 355-360
[9]  
Radin C.(1996)The dynamical properties of Penrose tilings Trans. Amer. Math. Soc. 348 4447-4464
[10]  
Wolff M.(1971)Undecidability and nonperiodicity of tilings in the plane Invent. Math. 12 177-209