Fatal Heyting Algebras and Forcing Persistent Sentences

被引:0
作者
Leo Esakia
Benedikt Löwe
机构
[1] Universiteit van Amsterdam,Institute for Logic, Language and Computation
[2] Universität Hamburg,Fachbereich Mathematik
来源
Studia Logica | 2012年 / 100卷
关键词
forcing; intermediate logics; Heyting algebra;
D O I
暂无
中图分类号
学科分类号
摘要
Hamkins and Löwe proved that the modal logic of forcing is S4.2. In this paper, we consider its modal companion, the intermediate logic KC and relate it to the fatal Heyting algebra HZFC of forcing persistent sentences. This Heyting algebra is equationally generic for the class of fatal Heyting algebras. Motivated by these results, we further analyse the class of fatal Heyting algebras.
引用
收藏
页码:163 / 173
页数:10
相关论文
共 17 条
[1]  
Bezhanishvili G.(2009)‘The universal modality, the center of a Heyting algebra, and the Blok-Esakia theorem’ Annals of Pure and Applied Logic 161 253-267
[2]  
Dummett M.(1959)‘Modal logics between S4 and S5’ Zeitschrift für mathematische Logik und Grundlagen der Mathematik 3 250-264
[3]  
Lemmon E.(1958)‘Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes’ Dialectica 12 280-287
[4]  
Gödel K.(2008)‘The modal logic of forcing’ Transactions of the American Mathematical Society 360 1793-1817
[5]  
Hamkins J. D.(1982)‘Categorical algebraic properties.A compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity’ Studia Scientiarum Mathematicarum Hungarica 18 79-140
[6]  
Löwe B.(2005)‘Cardinal spaces and topological representations of bimodal logics’ Logic Journal of the IGPL 13 301-306
[7]  
Kiss E.W.(1977)‘Craig’s theorem in superintuitionistic logics and amalgamable varieties’ Algebra and Logic 16 427-455
[8]  
Márki L.(1948)‘Some theorems about the sentential calculi of Lewis and Heyting’ Journal of Symbolic Logic 13 1-15
[9]  
Prőhle P.(1946)‘A remark on functionally free algebras’ Annals of Mathematics 47 163-165
[10]  
Tholen W.(undefined)undefined undefined undefined undefined-undefined