The Peak Algebra of the Symmetric Group

被引:0
作者
Kathryn L. Nyman
机构
来源
Journal of Algebraic Combinatorics | 2003年 / 17卷
关键词
peaks; Solomon's descent algebra; quasisymmetric functions;
D O I
暂无
中图分类号
学科分类号
摘要
The peak set of a permutation σ is the set {i : σ(i − 1) < σ(i) > σ(i + 1)}. The group algebra of the symmetric group Sn admits a subalgebra in which elements are sums of permutations with a common descent set. In this paper we show the existence of a subalgebra of this descent algebra in which elements are sums of permutations sharing a common peak set. To prove the existence of this peak algebra we use the theory of enriched (P, γ)-partitions and the algebra of quasisymmetric peak functions studied by Stembridge (Trans. Amer. Math. Soc. 349 (1997) 763–788).
引用
收藏
页码:309 / 322
页数:13
相关论文
共 24 条
[11]  
Reutenauer C.(1976)Duality between quasisymmetric functions and the Solomon descent algebra J. Algebra 41 255-268
[12]  
Bergeron N.(1997)A Mackey formula in the group ring of a Coxeter group Trans. Amer. Math. Soc. 349 763-788
[13]  
Mykytiuk S.(undefined)Enriched P-partitions undefined undefined undefined-undefined
[14]  
Sottile F.(undefined)undefined undefined undefined undefined-undefined
[15]  
van Willigenburg S.(undefined)undefined undefined undefined undefined-undefined
[16]  
Cellini P.(undefined)undefined undefined undefined undefined-undefined
[17]  
Garsia A.M.(undefined)undefined undefined undefined undefined-undefined
[18]  
Reutenauer C.(undefined)undefined undefined undefined undefined-undefined
[19]  
Gessel I.M.(undefined)undefined undefined undefined undefined-undefined
[20]  
Loday J.L.(undefined)undefined undefined undefined undefined-undefined