The Peak Algebra of the Symmetric Group

被引:0
作者
Kathryn L. Nyman
机构
来源
Journal of Algebraic Combinatorics | 2003年 / 17卷
关键词
peaks; Solomon's descent algebra; quasisymmetric functions;
D O I
暂无
中图分类号
学科分类号
摘要
The peak set of a permutation σ is the set {i : σ(i − 1) < σ(i) > σ(i + 1)}. The group algebra of the symmetric group Sn admits a subalgebra in which elements are sums of permutations with a common descent set. In this paper we show the existence of a subalgebra of this descent algebra in which elements are sums of permutations sharing a common peak set. To prove the existence of this peak algebra we use the theory of enriched (P, γ)-partitions and the algebra of quasisymmetric peak functions studied by Stembridge (Trans. Amer. Math. Soc. 349 (1997) 763–788).
引用
收藏
页码:309 / 322
页数:13
相关论文
共 24 条
[1]  
Bayer D.(1992)Trailing the dovetail shuffle to its lair Ann. Appl. Probab. 2 294-313
[2]  
Diaconis P.(1992)Orthogonal idempotents in the descent algebra of J. Pure Appl. Algebra 79 109-129
[3]  
Bergeron F.(1992) and applications J. Algebraic Combinatorics 1 23-44
[4]  
Bergeron N.(1992)A decomposition of the descent algebra of a finite Coxeter group J. Algebra 150 503-519
[5]  
Bergeron F.(2002)Homomorphisms between Solomon's descent algebra Discrete Math. 246 57-66
[6]  
Bergeron N.(1995)Shifted quasisymmetric functions and the Hopf algebra of peak functions J. Algebra 175 990-1014
[7]  
Howlett R.B.(1989)A general commutative descent algebra Adv. in Math. 77 189-262
[8]  
Taylor D.E.(1984)A decomposition of Solomon's descent algebra Contemp. Math. 34 289-301
[9]  
Bergeron F.(1989)Multipartite P-partitions and inner products of skew Schur functions Invent. Math. 96 205-230
[10]  
Garcia A.(1995)Opérations sur l'homologie cyclique des algèbre commutatives J. Algebra 177 967-982