The dual of a bergman space on simply connected domains

被引:0
作者
Håkan Hedenmalm
机构
[1] Lund University,Department of Mathematics
[2] The Royal Institute of Technology,Department of Mathematics
来源
Journal d’Analyse Mathématique | 2002年 / 88卷
关键词
Sobolev Space; Unit Disk; Dirichlet Problem; Conformal Mapping; Connected Domain;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:311 / 335
页数:24
相关论文
共 38 条
[1]  
Aleman A.(1994)Finite codimensional invariant subspaces in Hilbert spaces of analytic functions J. Funct. Anal. 119 1-18
[2]  
Aleman A.(1997)Integration operators on Bergman spaces Indiana Univ. Math. J. 46 337-356
[3]  
Siskakis A. G.(1978)Inégalités à poids pour le noyau de Bergman C. R. Acad. Sci. Paris, Sér. A-B 286 A775-A778
[4]  
Békollé D.(1986)Projections sur des espaces de fonctions holomorphes dans des domaines plans Canad. J. Math. 38 127-157
[5]  
Bonami A.(1998)Coefficient estimates for negative powers of the derivative of univalent functions Ark. Mat. 36 255-273
[6]  
Békollé D.(1916)über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln Sitzungsber. Preuss. Akad. Wiss. 38 940-955
[7]  
Bertilsson D.(1997)Harmonic functions of maximal growth: invertibility and cyclicity in Bergman spaces J. Amer. Math. Soc. 10 761-796
[8]  
Bieberbach L.(1980)The Bergman projection over plane regions Ark. Mat 18 207-221
[9]  
Borichev A.(1978)The integrability of the derivative in conformai mapping J. London Math. Soc. 18 261-272
[10]  
Hedenmalm H.(1992)On coefficient problems for univalent functions and conformal dimension Duke Math. J. 66 169-206