A New Class of Homology and Cohomology 3-Manifolds

被引:0
作者
D. J. Garity
U. H. Karimov
D. Repovš
F. Spaggiari
机构
[1] Oregon State University,Department of Mathematics
[2] Academy of Sciences of Tajikistan,Institute of Mathematics
[3] University of Ljubljana,Faculty of Education and Faculty of Mathematics and Physics
[4] University of Modena and Reggio E,Department of Physics, Informatics and Mathematics
来源
Mediterranean Journal of Mathematics | 2016年 / 13卷
关键词
Cohomology 3-manifold; cohomological dimension; Borel–Moore homology; Čech cohomology; Milnor–Harlap exact sequence; lens space; ANR; Primary 55P99; 57P05; 57P10; Secondary 55N05; 55N35; 57M25;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for any set of primes P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}}$$\end{document} there exists a space MP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{\mathcal{P}}}$$\end{document} which is a homology and cohomology 3-manifold with coefficients in Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}_{p}}$$\end{document} for p∈P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p \in \mathcal{P}}$$\end{document} and is not a homology or cohomology 3-manifold with coefficients in Zq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}_q}$$\end{document} for q∉P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q \not\in \mathcal{P}}$$\end{document}. In addition, MP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{\mathcal{P}}}$$\end{document} is not a homology or cohomology 3-manifold with coefficients in Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}$$\end{document} or Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}.
引用
收藏
页码:1277 / 1283
页数:6
相关论文
共 2 条
[1]  
Alexander J.W.(1919)Note on two three-dimensional manifolds with the same group Trans. Am. Math. Soc 20 339-342
[2]  
Tietze H.(1908)Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten Monathsh. Für Math. Und Phys. 19 1-118