Re: Positive Resolution of Rubio de Francia’s Littlewood–Paley Conjecture for Arbitrary Disjoint Intervals in the Context of A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{1}$$\end{document}-Weighted L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}

被引:0
作者
Earl Berkson
机构
[1] University of Illinois,Department of Mathematics
关键词
Weighted ; Rubio de Francia’s Littlewood–Paley Conjecture for weighted ; Partial sum projection; Fourier multipliers; Primary 30H10; 42A45; 42B25; 46B50; 46E15; 46E30;
D O I
10.1007/s12220-022-00952-w
中图分类号
学科分类号
摘要
This article develops results pointing towards affirmation of Rubio de Francia’s 1985 conjecture Asserting that for ω∈A1R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in A_{1}\left( {\mathbb {R}}\right) $$\end{document} a Littlewood–Paley type inequality, in the setting of L2R,ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}\left( {\mathbb {R}},\omega \right) $$\end{document}, holds for arbitrary disjoint intervals of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}. (The present study’s result does include a subsidiary requirement that ω∈A1R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in A_{1}\left( {\mathbb {R}}\right) $$\end{document} is an even function on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}.) To treat this conjecture in its real line setting, we first completely establish its periodic counterpart for weighted T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document}. This weighted periodic environment is addressed first because of the greater transparency available in its machinery—in particular, the structural simplicity afforded by the finiteness of wtdt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\left( t\right) \mathrm{d}t$$\end{document} viewed as a measure on the circle T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document}, when w∈A1T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in A_{1}\left( {\mathbb {T}}\right) $$\end{document}. Thereafter, we develop avenues for transferring to the weighted real line aspects of the periodic conjecture using steps analogous to those having just been successfully used to establish the periodic conjecture. Our study of the square functions ∑k≥1SJkf21/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \sum _{k\ge 1}\left| S_{J_{k} }f\right| ^{2}\right\} ^{1/2}$$\end{document} associated with the periodic counterpart of Rubio de Francia’s Conjecture winds up being rooted in the interactions of the class of all even A1T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{1}\left( {\mathbb {T}}\right) $$\end{document} weights w with the corresponding classes f∈L2T,w:f^Z⊆R.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ f\in L^{2}\left( {\mathbb {T}},w\right) :{\widehat{f}}\left( {\mathbb {Z}}\right) \subseteq {\mathbb {R}}\right\} . \end{aligned}$$\end{document}
引用
收藏
相关论文
共 11 条
  • [1] Barry JY(1954)On the convergence of ordered sets of projections Proc. Am. Math. Soc. 5 313-314
  • [2] Berkson E(2003)On restrictions of multipliers in weighted settings Indiana Univ. Math. J. 52 927-961
  • [3] Gillespie TA(2012)Weighted bounds for variational Fourier series Studia Math. 211 153-190
  • [4] Do Y(2021)Quantitative weighted estimates for Rubio de Francia’s Littlewood–Paley square function J. Geom. Anal. 31 748-771
  • [5] Lacey M(1974)A weighted norm inequality for Fourier series Bull. Am. Math. Soc. 80 274-277
  • [6] Garg R(2014)Fourier multipliers on weighted Math. Res. Lett. 21 807-830
  • [7] Roncal L(undefined) spaces undefined undefined undefined-undefined
  • [8] Shrivastava S(undefined)undefined undefined undefined undefined-undefined
  • [9] Hunt RA(undefined)undefined undefined undefined undefined-undefined
  • [10] Young W-S(undefined)undefined undefined undefined undefined-undefined