Rare Events in Random Geometric Graphs

被引:0
|
作者
Christian Hirsch
Sarat B. Moka
Thomas Taimre
Dirk P. Kroese
机构
[1] University of Groningen,Bernoulli Institute
[2] The University of Queensland,School of Mathematics and Physics
来源
Methodology and Computing in Applied Probability | 2022年 / 24卷
关键词
Rare event; Random geometric graph; Conditional Monte Carlo; Strauss process; 60K35; 60F10; 82C22;
D O I
暂无
中图分类号
学科分类号
摘要
This work introduces and compares approaches for estimating rare-event probabilities related to the number of edges in the random geometric graph on a Poisson point process. In the one-dimensional setting, we derive closed-form expressions for a variety of conditional probabilities related to the number of edges in the random geometric graph and develop conditional Monte Carlo algorithms for estimating rare-event probabilities on this basis. We prove rigorously a reduction in variance when compared to the crude Monte Carlo estimators and illustrate the magnitude of the improvements in a simulation study. In higher dimensions, we use conditional Monte Carlo to remove the fluctuations in the estimator coming from the randomness in the Poisson number of nodes. Finally, building on conceptual insights from large-deviations theory, we illustrate that importance sampling using a Gibbsian point process can further substantially reduce the estimation variance.
引用
收藏
页码:1367 / 1383
页数:16
相关论文
共 50 条
  • [1] Rare Events in Random Geometric Graphs
    Hirsch, Christian
    Moka, Sarat B.
    Taimre, Thomas
    Kroese, Dirk P.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (03) : 1367 - 1383
  • [2] Random geometric graphs
    Cannings, C
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2005, 168 : 636 - 636
  • [3] Random geometric graphs
    Dall, J
    Christensen, M
    PHYSICAL REVIEW E, 2002, 66 (01)
  • [4] Geometric Random Graphs vs Inhomogeneous Random Graphs
    Napolitano, George M.
    Turova, Tatyana
    MARKOV PROCESSES AND RELATED FIELDS, 2019, 25 (04) : 615 - 637
  • [5] Random models for geometric graphs
    Serna, Maria
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2007, 4525 : 37 - 37
  • [6] SYNCHRONIZATION IN RANDOM GEOMETRIC GRAPHS
    Diaz-Guilera, Albert
    Gomez-Gardenes, Jesus
    Moreno, Yamir
    Nekovee, Maziar
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (02): : 687 - 693
  • [7] Infinite Random Geometric Graphs
    Bonato, Anthony
    Janssen, Jeannette
    ANNALS OF COMBINATORICS, 2011, 15 (04) : 597 - 617
  • [8] On the Distribution of Random Geometric Graphs
    Badiu, Mihai-Alin
    Coon, Justin P.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 2137 - 2141
  • [9] Directed random geometric graphs
    Michel, Jesse
    Reddy, Sushruth
    Shah, Rikhav
    Silwal, Sandeep
    Movassagh, Ramis
    JOURNAL OF COMPLEX NETWORKS, 2019, 7 (05) : 792 - 816
  • [10] Geometric inhomogeneous random graphs
    Bringmann, Karl
    Keusch, Ralph
    Lengler, Johannes
    THEORETICAL COMPUTER SCIENCE, 2019, 760 : 35 - 54