Zero Surface Tension Limit of Viscous Surface Waves

被引:0
|
作者
Zhong Tan
Yanjin Wang
机构
[1] Xiamen University,School of Mathematical Sciences
来源
关键词
Surface Tension; Initial Data; Weak Solution; Compatibility Condition; Strong Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the free boundary problem for a layer of viscous, incompressible fluid in a uniform gravitational field, lying above a rigid bottom and below the atmosphere. For the “semi-small” initial data, we prove the zero surface tension limit of the problem within a local time interval. The unique local strong solution with surface tension is constructed as the limit of a sequence of approximate solutions to a special parabolic regularization. For the small initial data, we prove the global-in-time zero surface tension limit of the problem.
引用
收藏
页码:733 / 807
页数:74
相关论文
共 50 条
  • [41] Capillary waves with variable surface tension
    VandenBroeck, JM
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1996, 47 (05): : 799 - 808
  • [42] On rotational water waves with surface tension
    Wahlen, Erik
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1858): : 2215 - 2225
  • [43] ON THE LIMIT AS THE SURFACE TENSION AND DENSITY RATIO TEND TO ZERO FOR THE TWO-PHASE EULER EQUATIONS
    Pusateri, Fabio
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (02) : 347 - 373
  • [44] Effects of Surface Tension and Uneven Bottom on Surface Solitary Waves
    Wang, Song-Ling
    Wu, Zheng-Ren
    Cheng, You-Liang
    Liu, Mei
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [45] Subwavelength surface waves with zero diffraction
    Miret, Juan J.
    Pastor, David
    Zapata-Rodriguez, Carlos J.
    JOURNAL OF NANOPHOTONICS, 2011, 5
  • [46] The Vanishing Surface Tension Limit of the Muskat Problem
    Flynn, Patrick T.
    Nguyen, Huy Q.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (02) : 1205 - 1241
  • [47] The Vanishing Surface Tension Limit of the Muskat Problem
    Patrick T. Flynn
    Huy Q. Nguyen
    Communications in Mathematical Physics, 2021, 382 : 1205 - 1241
  • [48] Compressible viscous heat-conducting surface wave without surface tension
    Huang, Yongting
    Luo, Tao
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (06)
  • [49] STATIONARY FREE SURFACE VISCOUS FLOWS WITHOUT SURFACE TENSION IN THREE DIMENSIONS
    Abergel, Frederic
    Bailly, Jacques-Herbert
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2012, 25 (9-10) : 801 - 820
  • [50] AXISYMMETRIC WAVES ON THE SURFACE OF VISCOUS-FLUID
    ZAVOLZHENSKII, MV
    TERSKOV, AK
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1979, 43 (02): : 294 - 301