Zero Surface Tension Limit of Viscous Surface Waves

被引:0
|
作者
Zhong Tan
Yanjin Wang
机构
[1] Xiamen University,School of Mathematical Sciences
来源
关键词
Surface Tension; Initial Data; Weak Solution; Compatibility Condition; Strong Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the free boundary problem for a layer of viscous, incompressible fluid in a uniform gravitational field, lying above a rigid bottom and below the atmosphere. For the “semi-small” initial data, we prove the zero surface tension limit of the problem within a local time interval. The unique local strong solution with surface tension is constructed as the limit of a sequence of approximate solutions to a special parabolic regularization. For the small initial data, we prove the global-in-time zero surface tension limit of the problem.
引用
收藏
页码:733 / 807
页数:74
相关论文
共 50 条
  • [31] Surface Waves for a Compressible Viscous Fluid
    Tanaka, Naoto
    Tani, Atusi
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (04) : 303 - 363
  • [32] Surface Waves for a Compressible Viscous Fluid
    Naoto Tanaka
    Atusi Tani
    Journal of Mathematical Fluid Mechanics, 2003, 5 : 303 - 363
  • [33] ON CREATION OF SURFACE WAVES BY VISCOUS FORCES
    SMITH, SH
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1968, 21 : 439 - &
  • [34] SURFACE WAVES IN HIGHLY VISCOUS LIQUIDS
    LEVY, JC
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 269 (09): : 361 - &
  • [35] Sintering of viscous droplets under surface tension
    Wadsworth, Fabian B.
    Vasseur, Jeremie
    Llewellin, Edward W.
    Schauroth, Jenny
    Dobson, Katherine J.
    Scheu, Bettina
    Dingwell, Donald B.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2188):
  • [36] Surface-tension measurements of viscous liquids
    Pfund, AH
    Greenfield, EW
    INDUSTRIAL AND ENGINEERING CHEMISTRY-ANALYTICAL EDITION, 1936, 8 : 81 - 82
  • [37] The surface tension effect on viscous liquid spreading along a superhydrophobic surface
    Aksenov, A. V.
    Sudarikova, A. D.
    Chicherin, I. S.
    V INTERNATIONAL CONFERENCE ON PROBLEMS OF MATHEMATICAL AND THEORETICAL PHYSICS AND MATHEMATICAL MODELLING, 2017, 788
  • [38] On the structure of parasitic gravity-capillary standing waves in the small surface tension limit
    Shelton, Josh
    Milewski, Paul
    Trinh, Philippe H.
    JOURNAL OF FLUID MECHANICS, 2023, 972
  • [39] On the structure of steady parasitic gravity-capillary waves in the small surface tension limit
    Shelton, Josh
    Milewski, Paul
    Trinh, Philippe H.
    JOURNAL OF FLUID MECHANICS, 2021, 922
  • [40] On the structure of steady parasitic gravity-capillary waves in the small surface tension limit
    Shelton, Josh
    Milewski, Paul
    Trinh, Philippe H.
    Journal of Fluid Mechanics, 2021, 922