Zero Surface Tension Limit of Viscous Surface Waves

被引:0
作者
Zhong Tan
Yanjin Wang
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Communications in Mathematical Physics | 2014年 / 328卷
关键词
Surface Tension; Initial Data; Weak Solution; Compatibility Condition; Strong Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the free boundary problem for a layer of viscous, incompressible fluid in a uniform gravitational field, lying above a rigid bottom and below the atmosphere. For the “semi-small” initial data, we prove the zero surface tension limit of the problem within a local time interval. The unique local strong solution with surface tension is constructed as the limit of a sequence of approximate solutions to a special parabolic regularization. For the small initial data, we prove the global-in-time zero surface tension limit of the problem.
引用
收藏
页码:733 / 807
页数:74
相关论文
共 50 条
  • [31] SURFACE-TENSION AND VISCOSITY FROM DAMPED FREE OSCILLATIONS OF VISCOUS DROPLETS
    SURYANARAYANA, PVR
    BAYAZITOGLU, Y
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1991, 12 (01) : 137 - 151
  • [32] On Varifold Solutions of Two-Phase Incompressible Viscous Flow with Surface Tension
    Karen Yeressian
    Journal of Mathematical Fluid Mechanics, 2015, 17 : 463 - 494
  • [33] Solitary waves, shock waves and conservation laws with the surface tension effect in the Boussinesq equation
    Biswas, Anjan
    Vega-Guzman, Jose
    Bansal, Anupma
    Kara, Abdul H.
    Aphane, Maggie
    Yildirim, Yakup
    Alshehri, Hashim M.
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2023, 72 (01) : 17 - 29
  • [34] Asymptotic Solutions of One-Dimensional Linear Evolution Equations for Surface Waves with Account for Surface Tension
    S. A. Sergeev
    Mathematical Notes, 2018, 103 : 499 - 504
  • [35] Asymptotic Solutions of One-Dimensional Linear Evolution Equations for Surface Waves with Account for Surface Tension
    Sergeev, S. A.
    MATHEMATICAL NOTES, 2018, 103 (3-4) : 499 - 504
  • [36] Temperature dependence of surface tension and capillary waves at liquid metal surfaces
    V. Kolevzon
    Journal of Experimental and Theoretical Physics, 1998, 87 : 1105 - 1109
  • [37] Traveling waves from the arclength parameterization: Vortex sheets with surface tension
    Akers, Benjamin
    Ambrose, David M.
    Wright, J. Douglas
    INTERFACES AND FREE BOUNDARIES, 2013, 15 (03) : 359 - 380
  • [38] SOLITARY WAVES IN A 2-LAYER FLUID WITH SURFACE-TENSION
    SUN, SM
    SHEN, MC
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (04) : 866 - 891
  • [39] Propagation of oblique water waves by an asymmetric trench in the presence of surface tension
    Sasmal, Anjan
    De, Soumen
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2021, 6 (02) : 206 - 214
  • [40] Surface tension and surface energy of nanomaterials
    Yu, X.H.
    Rong, J.
    Fu, T.L.
    Zhan, Z.L.
    Liu, Z.
    Liu, J.X.
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (12) : 5318 - 5322