A Stochastic Primal-Dual Method for Optimization with Conditional Value at Risk Constraints

被引:0
|
作者
Avinash N. Madavan
Subhonmesh Bose
机构
[1] University of Illinois at Urbana-Champaign,
关键词
Primal-dual optimization; Stochastic optimization; Risk-sensitive optimization; Conditional value at risk; 90C15; 90C25; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
We study a first-order primal-dual subgradient method to optimize risk-constrained risk-penalized optimization problems, where risk is modeled via the popular conditional value at risk (CVaR) measure. The algorithm processes independent and identically distributed samples from the underlying uncertainty in an online fashion and produces an η/K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta /\sqrt{K}$$\end{document}-approximately feasible and η/K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta /\sqrt{K}$$\end{document}-approximately optimal point within K iterations with constant step-size, where η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} increases with tunable risk-parameters of CVaR. We find optimized step sizes using our bounds and precisely characterize the computational cost of risk aversion as revealed by the growth in η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}. Our proposed algorithm makes a simple modification to a typical primal-dual stochastic subgradient algorithm. With this mild change, our analysis surprisingly obviates the need to impose a priori bounds or complex adaptive bounding schemes for dual variables to execute the algorithm as assumed in many prior works. We also draw interesting parallels in sample complexity with that for chance-constrained programs derived in the literature with a very different solution architecture.
引用
收藏
页码:428 / 460
页数:32
相关论文
共 50 条
  • [31] A Stochastic Primal-Dual algorithm for Distributed Asynchronous Composite Optimization
    Bianchi, Pascal
    Hachem, Walid
    Iutzeler, Franck
    2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 732 - 736
  • [32] Primal-Dual Optimization for Fluids
    Inglis, T.
    Eckert, M. -L.
    Gregson, J.
    Thuerey, N.
    COMPUTER GRAPHICS FORUM, 2017, 36 (08) : 354 - 368
  • [33] Primal-Dual Nonlinear Rescaling Method for Convex Optimization
    R. Polyak
    I. Griva
    Journal of Optimization Theory and Applications, 2004, 122 : 111 - 156
  • [34] Distributed Optimization Using the Primal-Dual Method of Multipliers
    Zhang, Guoqiang
    Heusdens, Richard
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2018, 4 (01): : 173 - 187
  • [35] Primal-dual nonlinear rescaling method for convex optimization
    Polyak, R
    Griva, I
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 122 (01) : 111 - 156
  • [36] Primal-dual exterior point method for convex optimization
    Polyak, Roman A.
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (01): : 141 - 160
  • [37] A PRIMAL-DUAL EXTERIOR POINT METHOD FOR NONLINEAR OPTIMIZATION
    Yamashita, Hiroshi
    Tanabe, Takahito
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) : 3335 - 3363
  • [38] A primal-dual potential reduction method for integral quadratic constraints
    Hansson, A
    Vandenberghe, L
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 3013 - 3018
  • [39] Distributed primal-dual stochastic subgradient algorithms for multi-agent optimization under inequality constraints
    Yuan, Deming
    Xu, Shengyuan
    Zhang, Baoyong
    Rong, Lina
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2013, 23 (16) : 1846 - 1868
  • [40] A fully stochastic primal-dual algorithm
    Pascal Bianchi
    Walid Hachem
    Adil Salim
    Optimization Letters, 2021, 15 : 701 - 710