A Stochastic Primal-Dual Method for Optimization with Conditional Value at Risk Constraints

被引:0
|
作者
Avinash N. Madavan
Subhonmesh Bose
机构
[1] University of Illinois at Urbana-Champaign,
关键词
Primal-dual optimization; Stochastic optimization; Risk-sensitive optimization; Conditional value at risk; 90C15; 90C25; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
We study a first-order primal-dual subgradient method to optimize risk-constrained risk-penalized optimization problems, where risk is modeled via the popular conditional value at risk (CVaR) measure. The algorithm processes independent and identically distributed samples from the underlying uncertainty in an online fashion and produces an η/K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta /\sqrt{K}$$\end{document}-approximately feasible and η/K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta /\sqrt{K}$$\end{document}-approximately optimal point within K iterations with constant step-size, where η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} increases with tunable risk-parameters of CVaR. We find optimized step sizes using our bounds and precisely characterize the computational cost of risk aversion as revealed by the growth in η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}. Our proposed algorithm makes a simple modification to a typical primal-dual stochastic subgradient algorithm. With this mild change, our analysis surprisingly obviates the need to impose a priori bounds or complex adaptive bounding schemes for dual variables to execute the algorithm as assumed in many prior works. We also draw interesting parallels in sample complexity with that for chance-constrained programs derived in the literature with a very different solution architecture.
引用
收藏
页码:428 / 460
页数:32
相关论文
共 50 条
  • [21] A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs
    Espinoza, Daniel
    Moreno, Eduardo
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 59 (03) : 617 - 638
  • [22] Online Primal-Dual Mirror Descent under Stochastic Constraints
    Wei X.
    Yu H.
    Neely M.J.
    Performance Evaluation Review, 2020, 48 (01): : 3 - 4
  • [23] Variable Metric Primal-Dual Method for Convex Optimization Problems with Changing Constraints
    Konnov I.V.
    Lobachevskii Journal of Mathematics, 2023, 44 (1) : 354 - 365
  • [24] Primal-Dual ε-Subgradient Method for Distributed Optimization
    Zhu, Kui
    Tang, Yutao
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2023, 36 (02) : 577 - 590
  • [25] Primal-Dual ε-Subgradient Method for Distributed Optimization
    Kui Zhu
    Yutao Tang
    Journal of Systems Science and Complexity, 2023, 36 : 577 - 590
  • [26] A PRIMAL-DUAL EXTERIOR POINT METHOD WITH A PRIMAL-DUAL QUADRATIC PENALTY FUNCTION FOR NONLINEAR OPTIMIZATION
    Igarashi, Yu
    Yabe, Hiroshi
    PACIFIC JOURNAL OF OPTIMIZATION, 2015, 11 (04): : 721 - 736
  • [27] Primal-Dual ε-Subgradient Method for Distributed Optimization
    ZHU Kui
    TANG Yutao
    Journal of Systems Science & Complexity, 2023, 36 (02) : 577 - 590
  • [28] PRIMAL-DUAL DECOMPOSITION OF SEPARABLE NONCONVEX OPTIMIZATION PROBLEMS WITH CONSTRAINTS
    ENGELMANN, B
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1990, 143 : 94 - 103
  • [29] Primal-dual stochastic distributed algorithm for constrained convex optimization
    Niu, Youcheng
    Wang, Haijing
    Wang, Zheng
    Xia, Dawen
    Li, Huaqing
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9763 - 9787
  • [30] A stochastic primal-dual algorithm for composite optimization with a linear operator
    Wen, Meng
    Zhang, Yongqiang
    Tang, Yuchao
    Cui, Angang
    Peng, Jigen
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267