Synergistic action of non-solvent induced phase separation in preparation of poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation

被引:0
|
作者
Yun-ren Qiu
Jing Qi
Yu-qing Wei
机构
[1] Central South University,School of Chemistry and Chemical Engineering
来源
关键词
thermally induced phase separation; hollow fiber membranes; synergistic action; hydrophilic membrane;
D O I
暂无
中图分类号
学科分类号
摘要
A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation (TIPS) has been carried out. The results show that the hollow fiber membrane prepared at air gap zero has no skin layer; the pore size near the outer surface is larger than that near the inner surface; and the special pore channel-like structure near the outer surface is formed, which is quite different with the typical sponge-like structure caused by TIPS and the finger-like structure caused by non-solvent induced phase separation (NIPS), because of the synergistic action of non-solvent induced phase separation at air gap zero. The pore size gradually decreases from outer surface layer to the intermediate layer, but increases gradually from intermediate layer to the inner surface layer. With the increase of air gap distance, the pore size near the outer surface gets smaller and a dense skin layer is formed, and the pore size gradually increases from the outer surface layer to the inner surface layer. Water permeability of the hollow fiber membrane decreases with air gap distance, the water permeability decreases sharply from 45.50×10−7 to 4.52×10−7 m3/(m2·s·kPa) as air gap increases from 0 to 10 mm at take-up speed of 0.236 m/s, further decreases from 4.52×10−7 to 1.00×10−8 m3/(m2·s·kPa) as the air gap increases from 10 to 40 mm. Both the breaking strength and the elongation increase with the increase of air gap distance. The breaking strength increases from 2.25 MPa to 4.19 MPa and the elongation increases from 33.9% to 132.6% as air gap increases from 0 mm to 40 mm at take-up speed 0.236 m/s.
引用
收藏
页码:2184 / 2190
页数:6
相关论文
共 50 条
  • [31] Fabrication of a poly(vinyl alcohol) monolith via thermally impacted non-solvent-induced phase separation
    Xiaoxia Sun
    Takashi Fujimoto
    Hiroshi Uyama
    Polymer Journal, 2013, 45 : 1101 - 1106
  • [32] Fabrication of a poly(vinyl alcohol) monolith via thermally impacted non-solvent-induced phase separation
    Sun, Xiaoxia
    Fujimoto, Takashi
    Uyama, Hiroshi
    POLYMER JOURNAL, 2013, 45 (10) : 1101 - 1106
  • [33] Development of organic solvent resistant hollow fiber nanofiltration via thermally induced phase separation
    Hou, Jian
    Jeon, Sungil
    Yun, Jaehan
    Byun, Hongsik
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [34] Preparation of Chemically Resistant Cellulose Benzoate Hollow Fiber Membrane via Thermally Induced Phase Separation Method
    Takao, Shota
    Rajabzadeh, Saeid
    Shibata, Masahide
    Otsubo, Chihiro
    Hamada, Toyozo
    Kato, Noriaki
    Nakagawa, Keizo
    Kitagawa, Tooru
    Matsuyama, Hideto
    Yoshioka, Tomohisa
    MEMBRANES, 2022, 12 (12)
  • [35] Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separation (TIPS) method
    Rajabzadeh, Saeid
    Maruyama, Tatsuo
    Ohmukai, Yoshikage
    Sotani, Tomohiro
    Matsuyama, Hideto
    SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 66 (01) : 76 - 83
  • [36] Poly(vinylidene fluoride) (PVDF) membrane fabrication with an ionic liquid via non-solvent thermally induced phase separation (N-TIPs)
    Ting He
    Xiaogang Li
    Qian Wang
    Yue Zhou
    Xiaozu Wang
    Zhaohui Wang
    Naser Tavajohi
    Zhaoliang Cui
    Applied Water Science, 2022, 12
  • [37] Poly(vinylidene fluoride) (PVDF) membrane fabrication with an ionic liquid via non-solvent thermally induced phase separation (N-TIPs)
    He, Ting
    Li, Xiaogang
    Wang, Qian
    Zhou, Yue
    Wang, Xiaozu
    Wang, Zhaohui
    Tavajohi, Naser
    Cui, Zhaoliang
    APPLIED WATER SCIENCE, 2022, 12 (03)
  • [38] Chemical cleaning and membrane aging of poly (vinylidene fluoride) (PVDF) membranes fabricated via non-solvent induced phase separation (NIPS) and thermally induced phase separation (TIPS) (vol 313, 123488, 2023)
    Yu, Huarong
    Shangguang, Siyuan
    Yang, Haiyang
    Rong, Hongwei
    Qu, Fangshu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 317
  • [39] Effects of spinning temperature on hollow fiber membrane prepared via thermally induced phase separation
    Zhao, Yajing
    Yang, Chaohuan
    Cheng, Lan
    Wang, Juan
    Li, Yingdong
    Wu, Haoyun
    Li, Pingli
    DESALINATION AND WATER TREATMENT, 2018, 129 : 116 - 126
  • [40] Effect of diluent on poly(ethylene-co-vinyl alcohol) hollow-fiber membrane formation via thermally induced phase separation
    Shan, MX
    Matsuyama, H
    Teramoto, M
    Okuno, J
    Lloyd, DR
    Kubota, N
    JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 95 (02) : 219 - 225