A Trudinger–Moser inequality for a conical metric in the unit ball

被引:2
作者
Yunyan Yang
Xiaobao Zhu
机构
[1] Renmin University of China,School of Mathematics
来源
Archiv der Mathematik | 2019年 / 112卷
关键词
Trudinger–Moser inequality; Blow-up analysis; Conical metric; 35J15; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we prove a Trudinger–Moser inequality for a conical metric in the unit ball. Precisely, let B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}$$\end{document} be the unit ball in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}(N≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N\ge 2)$$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, g=|x|2pNβ(dx12+⋯+dxN2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=|x|^{\frac{2p}{N}\beta }(dx_1^2+\cdots +dx_N^2)$$\end{document} be a conical metric on B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}$$\end{document}, and λp(B)=inf∫B|∇u|Ndx:u∈W01,N(B),∫B|u|pdx=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _p({\mathbb {B}})=\inf \left\{ \intop _{\mathbb {B}}|\nabla u|^Ndx: u\in W_0^{1,N}({\mathbb {B}}),\intop _{\mathbb {B}}|u|^pdx=1\right\} $$\end{document}. We prove that for any β≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \ge 0$$\end{document} and α<(1+pNβ)N-1+Npλp(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <(1+\frac{p}{N}\beta )^{N-1+\frac{N}{p}}\lambda _p({\mathbb {B}})$$\end{document}, there exists a constant C such that for all radially symmetric functions u∈W01,N(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in W_0^{1,N}({\mathbb {B}})$$\end{document} with ∫B|∇u|Ndx-α(∫B|u|p|x|pβdx)N/p≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\intop _{\mathbb {B}}|\nabla u|^Ndx-\alpha (\intop _{\mathbb {B}}|u|^p|x|^{p\beta }dx)^{N/p}\le 1$$\end{document}, there holds ∫BeαN(1+pNβ)|u|NN-1|x|pβdx≤C,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \intop _{\mathbb {B}}e^{\alpha _N(1+\frac{p}{N}\beta )|u|^{\frac{N}{N-1}}}|x|^{p\beta }dx\le C, \end{aligned}$$\end{document}where |x|pβdx=dvg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x|^{p\beta }dx=dv_g$$\end{document}, αN=NωN-11/(N-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _N=N\omega _{N-1}^{1/(N-1)}$$\end{document}, ωN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{N-1}$$\end{document} is the area of the unit sphere in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}; moreover, extremal functions for such inequalities exist. The case p=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=N$$\end{document}, -1<β<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1<\beta <0$$\end{document}, and α=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0$$\end{document} was considered by Adimurthi-Sandeep (Nonlinear Differ Equ Appl 13:585–603, 2007), while the case p=N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=N=2$$\end{document}, β≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \ge 0$$\end{document}, and α=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0$$\end{document}, was studied by de Figueiredo (Proc Am Math Soc 144:3369–3380, 2016).
引用
收藏
页码:531 / 545
页数:14
相关论文
共 63 条
[1]  
Adimurthi-Sandeep K(2007)A singular Moser–Trudinger embedding and its applications Nonlinear Differ. Equ. Appl. 13 585-603
[2]  
Adimurthi-Yang Y(2010)An interpolation of Hardy inequality and Trudinger–Moser inequality in Int. Math. Res. Notices 13 2394-2426
[3]  
Bonheure D(2008) and its applications Adv. Differ. Equ. 13 105-138
[4]  
Serra E(2005)Symmetry of extremal functions in Moser–Trudinger inequalities and a Hénon type problem in dimension two Adv. Nonlinear Stud. 5 337-350
[5]  
Tarallo M(1986)Non-radial maximizers for functionals with exponential non-linearity in J. Bull. Sci. Math. 110 113-127
[6]  
Calanchi M(2015)On the existence of an extremal function for an inequality of Moser Calc. Var. 54 2341-2366
[7]  
Terraneo E(2011)Extremal functions for the singular Moser–Trudinger inequality in J. Funct. Anal. 261 3735-3770
[8]  
Carleson L(2016) dimensions Proc. Am. Math. Soc. 144 3369-3380
[9]  
Chang A(1997)Sobolev spaces of symmetric functions and applications Asian J. Math. 1 230-248
[10]  
Csato G(2015)Trudinger–Moser inequalities involving fast growth and weights with strong vanishing at zero J. Differ. Equ. 258 4062-4101