On quasicompact homogeneous spaces

被引:0
作者
V. V. Gorbatsevich
机构
[1] Moscow State Technological University,
来源
Siberian Mathematical Journal | 2013年 / 54卷
关键词
homogeneous space; invariant measure; finite covering;
D O I
暂无
中图分类号
学科分类号
摘要
Continuing the study of quasicompact homogeneous spaces, we prove some previouslyannounced assertions and present some strengthenings for them. The new results of the article mainly concern the description of quasicompact homogeneous manifolds up to a finite covering.
引用
收藏
页码:231 / 242
页数:11
相关论文
共 13 条
[1]  
Gorbatsevich V V(1993)Lie transformation groups Lie Groups and Lie Algebras I. Foundations of Lie Theory. Lie Transformation Groups., Encycl. Math. Sci. 20 95-229
[2]  
Onishchik A L(1989)On some classes of homogeneous spaces close to compact Soviet Math., Dokl. 38 592-596
[3]  
Gorbatsevich V V(1989)Plesiocompact homogeneous spaces Siberian Math. J. 30 217-226
[4]  
Gorbatsevich V V(2001)On the properties of plesio-uniform subgroups in Lie groups Math. Notes 69 306-312
[5]  
Gorbatsevich V V(2008)Compact homogeneous spaces and their generalizations J. Math. Sci., New York 153 763-798
[6]  
Gorbatsevich V V(1991)The structure of homogeneous spaces with a finite invariant metric Soviet Math. (Izv. VUZ. Mat.) 35 61-64
[7]  
Gorbatsevich V V(1962)Homogeneous spaces with finite invariant measure Ann. Math. 75 17-37
[8]  
Mostow G D(1976)Homogeneous spaces with finite invariant measure Amer. J. Math. 98 311-324
[9]  
Wang S R(1977)Three-dimensional homogeneous spaces Siberian Math. J. 18 200-210
[10]  
Gorbatsevich V V(2012)Compact homogeneous manifolds of dimension at most 7 up to a finite covering Izv.: Math. 76 669-680