Estimation of the finite population distribution function using a global penalized calibration method

被引:0
作者
J. A. Mayor-Gallego
J. L. Moreno-Rebollo
M. D. Jiménez-Gamero
机构
[1] University of Seville,Department of Statistics and Operations Research
来源
AStA Advances in Statistical Analysis | 2019年 / 103卷
关键词
Auxiliary information; Model-assisted approach; Sample survey; Penalized calibration estimator;
D O I
暂无
中图分类号
学科分类号
摘要
Auxiliary information x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{x}}$$\end{document} is commonly used in survey sampling at the estimation stage. We propose an estimator of the finite population distribution function Fy(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{y}(t)$$\end{document} when x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{x}}$$\end{document} is available for all units in the population and related to the study variable y by a superpopulation model. The new estimator integrates ideas from model calibration and penalized calibration. Calibration estimates of Fy(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{y}(t)$$\end{document} with the weights satisfying benchmark constraints on the fitted values distribution function F^y^=Fy^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{\hat{y}}=F_{\hat{y}}$$\end{document} on a set of fixed values of t can be found in the literature. Alternatively, our proposal F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} seeks an estimator taking into account a global distance D(F^y^ω,Fy^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\hat{F}_{\hat{y}\omega },F_{\hat{y}})$$\end{document} between F^y^ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{\hat{y}\omega }$$\end{document} and Fy^,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F}_{\hat{y}},$$\end{document} and a penalty parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} that assesses the importance of this term in the objective function. The weights are explicitly obtained for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} distance and conditions are given so that F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} to be a distribution function. In this case F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document} can also be used to estimate the population quantiles. Moreover, results on the asymptotic unbiasedness and the asymptotic variance of F^yω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_{y\omega }$$\end{document}, for a fixed α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, are obtained. The results of a simulation study, designed to compare the proposed estimator to other existing ones, reveal that its performance is quite competitive.
引用
收藏
页码:1 / 35
页数:34
相关论文
共 62 条
[1]  
Antal E(2011)A direct bootstrap method for complex sampling desing from a finite population J. Am. Stat. Assoc. 106 534-543
[2]  
Tillé Y(2014)A new resampling method for sampling designs without replacement: the doubled bootstrap Comput. Stat. 29 1345-1363
[3]  
Antal E(2015)Gini index estimation in randomized response surveys AStA Adv. Stat. Anal. 99 45-62
[4]  
Tillé Y(2007)Semiparametric model-assisted estimation for natural resource surveys Surv. Methodol. 33 35-44
[5]  
Barabesi L(1986)Estimating distribution functions from survey data Biometrika 73 597-604
[6]  
Diana G(1993)Bias robust estimation in finite populations using nonparametric calibration J. Am. Stat. Assoc. 88 268-277
[7]  
Breidt FJ(1992)Calibration estimators in survey sampling J. Am. Stat. Assoc. 87 376-382
[8]  
Opsomer JD(1993)Estimators of the finite population distribution function using nonparametric regression Ann. Stat. 21 1452-1475
[9]  
Johson AA(2010)Penalized calibration in survey sampling: design-based estimation assisted by mixed models J. Stat. Plan. Infer. 140 3199-3212
[10]  
Ranalli MG(2014)Robust, distribution-free inference for income share ratios under complex sampling AStA Adv. Stat. Anal. 98 63-85