Fatigue life of stainless steel 304 enhancement by addition of multi-walled carbon nanotubes (MWCNTs)

被引:0
|
作者
Rizwanulhaque Syed
Wei Jiang
Cunshan Wang
M. Iqbal Sabir
机构
[1] Dalian University of Technology,School of Mechanical Engineering
[2] Dalian University of Technology,Key Laboratory of Materials Modification by Laser, Ion and Electron Beams
[3] Xiao Zhang County,888Huangtai Industrial State
来源
Journal of Mechanical Science and Technology | 2015年 / 29卷
关键词
CO; laser; Fatigue life; Fatigue crack growth; Multi-walled carbon nanotubes; Stainless steel;
D O I
暂无
中图分类号
学科分类号
摘要
Stainless steel is among the most widely used industrial materials. In particular, stainless steel 304 (304SS) is the most used material grade. To increase the utilization of any industrial material, its fatigue life should be optimized. In this work, the fatigue life of 304SS was enhanced by the addition of multi-walled carbon nanotubes (MWCNTs). Moreover, the incorporation of a small amount of MWCNTs increased the fatigue life of 304SS. Scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction (XRD) results showed that the suppression of fatigue crack growth rate was caused by CNT deposition at the crack tip. CNTs were entangled with each other, thereby resulting in finer grain size. The XRD diffractograms of the 304SS treated area peak showed that the microstructure consisted of austenite and carbon.
引用
收藏
页码:291 / 296
页数:5
相关论文
共 50 条
  • [41] Electrochemistry on Multi-walled Carbon Nanotubes in Organic Solutions
    Tsierkezos, Nikos G.
    Rathsmann, Eike
    Ritter, Uwe
    JOURNAL OF SOLUTION CHEMISTRY, 2011, 40 (09) : 1645 - 1656
  • [42] Adsorption thermodynamics of isoliquiritin on multi-walled carbon nanotubes
    Han Bo
    Chen Wen
    Wang Xin-chun
    Li Le
    Yan Huan
    Li Wen-xin
    NEW CARBON MATERIALS, 2010, 25 (01) : 75 - 78
  • [43] Surface modification and dispersion of multi-walled carbon nanotubes
    Lu Zhihua
    Sun Kangning
    Ren Shuai
    Jiao Mingchun
    RARE METAL MATERIALS AND ENGINEERING, 2007, 36 : 100 - 103
  • [44] EFFECT OF MULTI-WALLED CARBON NANOTUBES ON THE PROPERTIES OF POLYOXYMETHYLENE
    Sun Yao
    Bao Hada
    Jia Mingyin
    Guo Zhaoxia
    Yu Jian
    ACTA POLYMERICA SINICA, 2009, (07): : 684 - 688
  • [45] Electrochemistry on Multi-walled Carbon Nanotubes in Organic Solutions
    Nikos G. Tsierkezos
    Eike Rathsmann
    Uwe Ritter
    Journal of Solution Chemistry, 2011, 40 : 1645 - 1656
  • [46] Studies on the removal of tetracycline by multi-walled carbon nanotubes
    Zhang, Lei
    Song, Xiaoyan
    Liu, Xueyan
    Yang, Lijun
    Pan, Fang
    Lv, Junna
    CHEMICAL ENGINEERING JOURNAL, 2011, 178 : 26 - 33
  • [47] Structural characterization of carboxylated multi-walled carbon nanotubes
    Lee, Geon-Woong
    Kim, Jungsoo
    Yoon, Jinhwan
    Bae, Jong -Seong
    Shin, Byeong Chul
    Kim, Il Soo
    Oh, Weontae
    Ree, Moonhor
    THIN SOLID FILMS, 2008, 516 (17) : 5781 - 5784
  • [48] Hydrogen sensing properties of multi-walled carbon nanotubes
    Guo, Kun
    Jayatissa, Ahalapitiya H.
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2008, 28 (08): : 1556 - 1559
  • [49] Sorption of Metal Ions on Multi-Walled Carbon Nanotubes
    Bazhenov, A. V.
    Fursova, T. N.
    Grazhulene, S. S.
    Red'kin, A. N.
    Telegin, G. F.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2010, 18 (4-6) : 564 - 568
  • [50] Preparation and characterization of hydroxylated multi-walled carbon nanotubes
    Ling, Xin-Long
    Wei, Yi-Zhe
    Zou, Li-Ming
    Xu, Su
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2013, 421 : 9 - 15