Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane

被引:0
作者
A. D. Vishnevskaya
M. V. Demina
机构
[1] Moscow Institute of Electronics and Mathematics — Higher School of Economics,
来源
Mathematical Notes | 2023年 / 114卷
关键词
point vortex; infinite-dimensional configuration; stationary configuration; negative Pell equation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:46 / 54
页数:8
相关论文
共 31 条
[1]  
Helmholtz H.(1858)Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen J. Reine Angew. Math. 55 25-55
[2]  
Aref H.(2003)Vortex crystals Advances in Applied Mechanics 39 1-79
[3]  
Newton P. K.(2011)Relative equilibria of point vortices and the fundamental theorem of algebra Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 2168-2184
[4]  
Stremler M. A.(2006)Minimal polynomial systems for point vortex equilibria Phys. D 219 69-79
[5]  
Tokieda T.(2012)Vortices and polynomials: non-uniqueness of the Adler–Moser polynomials for the Tkachenko equation J. Phys. A 45 0-6589
[6]  
Vainchtein D. L.(2020)Bifurcation of point vortex equilibria: four-vortex translating configurations and five-vortex stationary configurations Nonlinearity 33 6564-576
[7]  
Aref H.(2020)A transformation between stationary point vortex equilibria Proc. A. 476 0-1286
[8]  
O’Neil K. A.(2011)Point vortices and polynomials of the Sawada–Kotera and Kaup–Kupershmidt equations Regul. Chaotic Dyn. 16 562-425
[9]  
Demina M. V.(1966)On vortex lattices JETP 22 1282-384
[10]  
Kudryashov N. A.(1987)Stationary configurations of point vortices Trans. Amer. Math. Soc. 302 383-368