Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane

被引:0
|
作者
A. D. Vishnevskaya
M. V. Demina
机构
[1] Moscow Institute of Electronics and Mathematics — Higher School of Economics,
来源
Mathematical Notes | 2023年 / 114卷
关键词
point vortex; infinite-dimensional configuration; stationary configuration; negative Pell equation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:46 / 54
页数:8
相关论文
共 50 条
  • [1] Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane
    Vishnevskaya, A. D.
    Demina, M. V.
    MATHEMATICAL NOTES, 2023, 114 (1-2) : 46 - 54
  • [2] STATIONARY CONFIGURATIONS OF POINT VORTICES
    ONEIL, KA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 302 (02) : 383 - 425
  • [3] Stationary Configurations of Point Vortices on a Cylinder
    Safonova, Dariya V.
    Demina, Maria V.
    Kudryashov, Nikolai A.
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (05): : 569 - 579
  • [4] Stationary Configurations of Point Vortices on a Cylinder
    Dariya V. Safonova
    Maria V. Demina
    Nikolai A. Kudryashov
    Regular and Chaotic Dynamics, 2018, 23 : 569 - 579
  • [5] On the negative Pell equation
    Golubeva E.P.
    Journal of Mathematical Sciences, 2011, 178 (2) : 144 - 149
  • [6] Point vortices in the plane: positive-dimensional configurations.
    Demina, M. V.
    Kudryashov, N. A.
    Semenova, J. E.
    VI INTERNATIONAL CONFERENCE PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING, 2017, 937
  • [7] Polynomial method for constructing equilibrium configurations of point vortices in a plane
    Demina M.V.
    Kudryashov N.A.
    Automatic Control and Computer Sciences, 2013, 47 (7) : 545 - 548
  • [8] On the negative Pell equation
    Fouvry, Etienne
    Klueners, Juergen
    ANNALS OF MATHEMATICS, 2010, 172 (03) : 2035 - 2104
  • [9] STATIONARY CONFIGURATIONS OF POINT VORTICES AND OTHER LOGARITHMIC OBJECTS IN 2 DIMENSIONS
    CAMPBELL, LJ
    KADTKE, JB
    PHYSICAL REVIEW LETTERS, 1987, 58 (07) : 670 - 673
  • [10] Finiteness of fixed equilibrium configurations of point vortices in the plane with a background flow
    Cheung, Pak-Leong
    Tuen Wai Ng
    NONLINEARITY, 2014, 27 (10) : 2445 - 2463