Non-parametric estimation of the spiking rate in systems of interacting neurons

被引:8
作者
Hodara P. [1 ]
Krell N. [2 ]
Löcherbach E. [1 ]
机构
[1] Département de Mathématiques, UMR 8088, CNRS, Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, Cergy-Pontoise Cedex
[2] Institut de Recherche mathématique de Rennes, CNRS-UMR 6625, Université de Rennes 1, Campus de Beaulieu, Bâtiment 22, Rennes Cedex
基金
巴西圣保罗研究基金会;
关键词
Biological neural nets; Kernel estimation; Nonparametric estimation; Piecewise deterministic Markov processes;
D O I
10.1007/s11203-016-9150-4
中图分类号
学科分类号
摘要
We consider a model of interacting neurons where the membrane potentials of the neurons are described by a multidimensional piecewise deterministic Markov process with values in RN, where N is the number of neurons in the network. A deterministic drift attracts each neuron’s membrane potential to an equilibrium potential m. When a neuron jumps, its membrane potential is reset to a resting potential, here 0, while the other neurons receive an additional amount of potential 1N. We are interested in the estimation of the jump (or spiking) rate of a single neuron based on an observation of the membrane potentials of the N neurons up to time t. We study a Nadaraya–Watson type kernel estimator for the jump rate and establish its rate of convergence in L2. This rate of convergence is shown to be optimal for a given Hölder class of jump rate functions. We also obtain a central limit theorem for the error of estimation. The main probabilistic tools are the uniform ergodicity of the process and a fine study of the invariant measure of a single neuron. © 2016, Springer Science+Business Media Dordrecht.
引用
收藏
页码:81 / 111
页数:30
相关论文
共 50 条
[21]   Estimation of a non-parametric variable importance measure of a continuous exposure [J].
Chambaz, Antoine ;
Neuvial, Pierre ;
van der Laan, Mark J. .
ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 :1059-1099
[22]   Non-Parametric Estimation of the Limit Dependence Function of Multivariate Extremes [J].
B. Abdous ;
K. Ghoudi ;
A. Khoudraji .
Extremes, 1999, 2 (3) :245-268
[23]   Non-parametric estimation for a pure-jump Levy process [J].
Cai, Chunhao ;
Guo, Junyi ;
You, Honglong .
ANNALS OF ACTUARIAL SCIENCE, 2018, 12 (02) :338-349
[24]   Optimal enforcement of causality in non-parametric transfer function estimation [J].
González R.A. ;
Valenzuela P.E. ;
Rojas C.R. ;
Rojas R.A. .
IEEE Control Systems Letters, 2017, 1 (02) :268-273
[25]   Non-parametric adaptive estimation of the drift for a jump diffusion process [J].
Schmisser, Emeline .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) :883-914
[26]   Modeling of recovery rate for a given default by non-parametric method [J].
Chen, Rongda ;
Zhou, Hanxian ;
Jin, Chenglu ;
Zheng, Wei .
PACIFIC-BASIN FINANCE JOURNAL, 2019, 57
[27]   A new non-parametric estimation of the expected shortfall for dependent financial losses [J].
Moutanabbir, Khouzeima ;
Bouaddi, Mohammed .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 232
[28]   Non-parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps [J].
Mancini, Cecilia .
SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (02) :270-296
[29]   On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators [J].
Di Bernardino, Elena ;
Rulliere, Didier .
DEPENDENCE MODELING, 2013, 1 (01) :1-36
[30]   Non-Parametric Estimation of Urban-Rural Digital Gap in China [J].
Liu, Jun ;
Liu, Yuanyuan ;
Lan, Xin .
PROCEEDINGS OF THE 2015 JOINT INTERNATIONAL MECHANICAL, ELECTRONIC AND INFORMATION TECHNOLOGY CONFERENCE (JIMET 2015), 2015, 10 :408-411