Non-parametric estimation of the spiking rate in systems of interacting neurons

被引:8
|
作者
Hodara P. [1 ]
Krell N. [2 ]
Löcherbach E. [1 ]
机构
[1] Département de Mathématiques, UMR 8088, CNRS, Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, Cergy-Pontoise Cedex
[2] Institut de Recherche mathématique de Rennes, CNRS-UMR 6625, Université de Rennes 1, Campus de Beaulieu, Bâtiment 22, Rennes Cedex
基金
巴西圣保罗研究基金会;
关键词
Biological neural nets; Kernel estimation; Nonparametric estimation; Piecewise deterministic Markov processes;
D O I
10.1007/s11203-016-9150-4
中图分类号
学科分类号
摘要
We consider a model of interacting neurons where the membrane potentials of the neurons are described by a multidimensional piecewise deterministic Markov process with values in RN, where N is the number of neurons in the network. A deterministic drift attracts each neuron’s membrane potential to an equilibrium potential m. When a neuron jumps, its membrane potential is reset to a resting potential, here 0, while the other neurons receive an additional amount of potential 1N. We are interested in the estimation of the jump (or spiking) rate of a single neuron based on an observation of the membrane potentials of the N neurons up to time t. We study a Nadaraya–Watson type kernel estimator for the jump rate and establish its rate of convergence in L2. This rate of convergence is shown to be optimal for a given Hölder class of jump rate functions. We also obtain a central limit theorem for the error of estimation. The main probabilistic tools are the uniform ergodicity of the process and a fine study of the invariant measure of a single neuron. © 2016, Springer Science+Business Media Dordrecht.
引用
收藏
页码:81 / 111
页数:30
相关论文
共 50 条