Sequestration of Martian CO2 by mineral carbonation

被引:0
作者
Tim Tomkinson
Martin R. Lee
Darren F. Mark
Caroline L. Smith
机构
[1] Scottish Universities Environmental Research Centre,Department of Earth Sciences
[2] School of Geographical and Earth Sciences,undefined
[3] University of Glasgow,undefined
[4] Natural History Museum,undefined
[5] ESA ESTEC,undefined
[6] Keplerlaan 1,undefined
[7] 200 AG Noordwijk,undefined
[8] The Netherlands,undefined
[9] UK Space Agency,undefined
[10] Atlas Building,undefined
[11] Harwell Oxford,undefined
来源
Nature Communications | / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2.
引用
收藏
相关论文
共 50 条
  • [21] CO2 mineral sequestration:: Chemically enhanced aqueous carbonation of serpentine
    Park, AHA
    Jadhav, R
    Fan, LS
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2003, 81 (3-4) : 885 - 890
  • [22] CO2 sequestration by aqueous mineral carbonation of limestone in a supercritical reactor
    Han, Du-Re
    Namkung, Hueon
    Lee, Ha-Min
    Huh, Dae-Gee
    Kim, Hyung-Taek
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 21 : 792 - 796
  • [23] Mineral carbonation of a pulp and paper industry waste for CO2 sequestration
    Spinola, Ana C.
    Pinheiro, Carolina T.
    Ferreira, Abel G. M.
    Gando-Ferreira, Licinio M.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 148 : 968 - 979
  • [24] Mineral carbonation using seawater for CO2 sequestration and utilization: A review
    Ho, Hsing-Jung
    Iizuka, Atsushi
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 307
  • [25] Mineral carbonation of flue gas desulfurization gypsum for CO2 sequestration
    Lee, Myung Gyu
    Jang, Young Nam
    Ryu, Kyung Won
    Kim, Wonbeak
    Bang, Jun-Hwan
    ENERGY, 2012, 47 (01) : 370 - 377
  • [26] Energy consumption and net CO2 sequestration of aqueous mineral carbonation
    Huijgen, Wouter J. J.
    Ruijg, Gerrit Jan
    Comans, Rob N. J.
    Witkamp, Geert-Jan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (26) : 9184 - 9194
  • [27] Direct mineral carbonation of coal fly ash for CO2 sequestration
    Dananjayan, Rushendra Revathy Tamilselvi
    Kandasamy, Palanivelu
    Andimuthu, Ramachandran
    JOURNAL OF CLEANER PRODUCTION, 2016, 112 : 4173 - 4182
  • [28] Sequestration of CO2 by Concrete Carbonation
    Galan, Isabel
    Andrade, Carmen
    Mora, Pedro
    Sanjuan, Miguel A.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (08) : 3181 - 3186
  • [29] Serpentinite Carbonation for CO2 Sequestration
    Power, Ian M.
    Wilson, Siobhan A.
    Dipple, Gregory M.
    ELEMENTS, 2013, 9 (02) : 115 - 121
  • [30] Mineral Carbonation of CO2
    Oelkers, Eric H.
    Gislason, Sigurdur R.
    Matter, Juerg
    ELEMENTS, 2008, 4 (05) : 333 - 337