A class of possibilistic portfolio selection model with interval coefficients and its application

被引:0
|
作者
Jun Li
Jiuping Xu
机构
[1] Sichuan University,Uncertainty Decision Making Laboratory, School of Business and Administration
来源
Fuzzy Optimization and Decision Making | 2007年 / 6卷
关键词
Portfolio selection; Interval coefficients; Modality approach; Goal programming; Genetic algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Because of the existence of non-stochastic factors in stock markets, several possibilistic portfolio selection models have been proposed, where the expected return rates of securities are considered as fuzzy variables with possibilistic distributions. This paper deals with a possibilistic portfolio selection model with interval center values. By using modality approach and goal attainment approach, it is converted into a nonlinear goal programming problem. Moreover, a genetic algorithm is designed to obtain a satisfactory solution to the possibilistic portfolio selection model under complicated constraints. Finally, a numerical example based on real world data is also provided to illustrate the effectiveness of the genetic algorithm.
引用
收藏
页码:123 / 137
页数:14
相关论文
共 50 条
  • [41] A Simple View on the Interval and Fuzzy Portfolio Selection Problems
    Kaczmarek, Krzysztof
    Dymova, Ludmila
    Sevastjanov, Pavel
    ENTROPY, 2020, 22 (09)
  • [42] An interval portfolio selection problem based on regret function
    Giove, S
    Funari, S
    Nardelli, C
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 170 (01) : 253 - 264
  • [43] A New Portfolio Selection Method Based on Interval Data
    Andreica, Madalina Ecaterina
    Dobre, Ion
    Andreica, Mugurel Ionut
    Resteanu, Cornel
    STUDIES IN INFORMATICS AND CONTROL, 2010, 19 (03): : 253 - 262
  • [44] A model for solving incompatible fuzzy goal programming: an application to portfolio selection
    Jimenez, Mariano
    Bilbao-Terol, Amelia
    Arenas-Parra, Mar
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2018, 25 (03) : 887 - 912
  • [45] On a model of portfolio selection with benchmark
    N Wagner
    Journal of Asset Management, 2002, 3 (1) : 55 - 65
  • [46] Partial similarity measure of uncertain random variables and its application to portfolio selection
    Gao, Rong
    Ahmadzade, Hamed
    Rezaei, Kamran
    Rezaei, Hassan
    Naderi, Habib
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (01) : 155 - 166
  • [47] Fuzzy Edmundson-Madansky Inequality and Its Application to Portfolio Selection Problems
    Li, Xiang
    Yang, Lixing
    Gao, Jinwu
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2010, 13 (04): : 1163 - 1173
  • [48] Voting shrinkage algorithm for Covariance Matrix Estimation and its application to portfolio selection
    Tuan Tran
    Nhat Nguyen
    Trung Nguyen
    An Mai
    2020 RIVF INTERNATIONAL CONFERENCE ON COMPUTING & COMMUNICATION TECHNOLOGIES (RIVF 2020), 2020, : 172 - 177
  • [49] Interval portfolio selection models within the framework of uncertainty theory
    Li, Xiang
    Qin, Zhongfeng
    ECONOMIC MODELLING, 2014, 41 : 338 - 344
  • [50] A Class of Resource-constrained Multiple Project Scheduling Model with Fuzzy Coefficients and Its Application to Working Procedure
    Zhang, Zhe
    Xu, Juping
    2008 IEEE INTERNATIONAL CONFERENCE ON MANAGEMENT OF INNOVATION AND TECHNOLOGY, VOLS 1-3, 2008, : 716 - 721