On the Eccentricity Matrices of Certain Bi-Block Graphs

被引:1
作者
Divyadevi, T. [1 ]
Jeyaraman, I. [1 ]
机构
[1] Natl Inst Technol Tiruchirappalli, Dept Math, Trichy 620015, Tamilnadu, India
关键词
Eccentricity matrix; Bi-block graph; Inertia; Spectral symmetry; SPECTRA;
D O I
10.1007/s40840-024-01687-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The eccentricity matrix of a simple connected graph G is obtained from the distance matrix of G by retaining the largest nonzero distance in each row and column, and the remaining entries are defined to be zero. A bi-block graph is a simple connected graph whose blocks are all complete bipartite graphs with possibly different orders. In this paper, we study the eccentricity matrices of a subclass B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} (which includes trees) of bi-block graphs. We first find the inertia of the eccentricity matrices of graphs in B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document}, and thereby, we characterize graphs in B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} with odd diameters. Precisely, if the diameter of G is an element of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\in {\mathscr {B}}$$\end{document} is more than three, then we show that the eigenvalues of the eccentricity matrix of G are symmetric with respect to the origin if and only if the diameter of G is odd. Further, we prove that the eccentricity matrices of graphs in B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} are irreducible.
引用
收藏
页数:28
相关论文
共 32 条
  • [31] The eccentricity matrix of a digraph
    Yang, Xiuwen
    Wang, Ligong
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 322 : 61 - 73
  • [32] Zhang F., 2011, Matrix Theory: Basic Results and Techniques, DOI DOI 10.1007/978-1-4614-1099-7