On the Eccentricity Matrices of Certain Bi-Block Graphs

被引:1
作者
Divyadevi, T. [1 ]
Jeyaraman, I. [1 ]
机构
[1] Natl Inst Technol Tiruchirappalli, Dept Math, Trichy 620015, Tamilnadu, India
关键词
Eccentricity matrix; Bi-block graph; Inertia; Spectral symmetry; SPECTRA;
D O I
10.1007/s40840-024-01687-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The eccentricity matrix of a simple connected graph G is obtained from the distance matrix of G by retaining the largest nonzero distance in each row and column, and the remaining entries are defined to be zero. A bi-block graph is a simple connected graph whose blocks are all complete bipartite graphs with possibly different orders. In this paper, we study the eccentricity matrices of a subclass B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} (which includes trees) of bi-block graphs. We first find the inertia of the eccentricity matrices of graphs in B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document}, and thereby, we characterize graphs in B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} with odd diameters. Precisely, if the diameter of G is an element of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\in {\mathscr {B}}$$\end{document} is more than three, then we show that the eigenvalues of the eccentricity matrix of G are symmetric with respect to the origin if and only if the diameter of G is odd. Further, we prove that the eccentricity matrices of graphs in B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} are irreducible.
引用
收藏
页数:28
相关论文
共 32 条
  • [1] An extended eigenvalue-free interval for the eccentricity matrix of threshold graphs
    Andelic, Milica
    da Fonseca, Carlos M.
    Koledin, Tamara
    Stanic, Zoran
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 491 - 503
  • [2] [Anonymous], 2010, Graphs and Matrices
  • [3] Balakrishnan R., 2012, UNIVERSITEX, DOI 10.1007/978-1-4614-4529-6
  • [4] Basunia M, 2021, B MALAYS MATH SCI SO, V44, P4269, DOI 10.1007/s40840-021-01166-z
  • [5] The diameter and eccentricity eigenvalues of graphs
    Chen, Yunzhe
    Wang, Jianfeng
    Wang, Jing
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (01)
  • [6] On the spectral radius of bi-block graphs with given independence number α
    Das, Joyentanuj
    Mohanty, Sumit
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
  • [7] Diestel R., 2010, Graduate Texts in Mathematics, V4, DOI [DOI 10.1007/978-3-642-14279-6, 10.1007/978-3-642-14279-6.]
  • [8] On the largest and least eigenvalues of eccentricity matrix of trees
    He, Xiaocong
    Lu, Lu
    [J]. DISCRETE MATHEMATICS, 2022, 345 (01)
  • [9] Inverse of the distance matrix of a bi-block graph
    Hou, Yaoping
    Sun, Yajing
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (08) : 1509 - 1517
  • [10] Spectral determination of graphs with one positive anti-adjacency eigenvalue
    Lei, Xingyu
    Wang, Jianfeng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 422