Braided Tensor Categories of Admissible Modules for Affine Lie Algebras

被引:0
|
作者
Thomas Creutzig
Yi-Zhi Huang
Jinwei Yang
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
[2] Rutgers University,Department of Mathematics
[3] Yale University,Department of Mathematics
来源
Communications in Mathematical Physics | 2018年 / 362卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Using the tensor category theory developed by Lepowsky, Zhang and the second author, we construct a braided tensor category structure with a twist on a semisimple category of modules for an affine Lie algebra at an admissible level. We conjecture that this braided tensor category is rigid and thus is a ribbon category. We also give conjectures on the modularity of this category and on the equivalence with a suitable quantum group tensor category. In the special case that the affine Lie algebra is sl^2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{\mathfrak{sl}}_2}$$\end{document}, we prove the rigidity and modularity conjectures.
引用
收藏
页码:827 / 854
页数:27
相关论文
共 50 条
  • [41] Modules in the categories Eλ over the Lie algebras An(1)
    Spirin, SA
    RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (03) : 654 - 655
  • [42] Categories of induced modules for Lie algebras with triangular decomposition
    Futorny, V
    König, S
    Mazorchuk, V
    FORUM MATHEMATICUM, 2001, 13 (05) : 641 - 661
  • [44] Branching Functions for Admissible Representations of Affine Lie Algebras and Super-Virasoro Algebras
    Kwon, Namhee
    AXIOMS, 2019, 8 (03)
  • [45] BRAIDED TENSOR CATEGORIES
    JOYAL, A
    STREET, R
    ADVANCES IN MATHEMATICS, 1993, 102 (01) : 20 - 78
  • [46] On braided Lie algebras
    Zhu, Haixing
    Liu, Guohua
    Journal of Southeast University (English Edition), 2011, 27 (02): : 227 - 229
  • [47] Trigonometric Lie algebras, affine Kac-Moody Lie algebras, and equivariant quasi modules for vertex algebras
    Guo, Hongyan
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF ALGEBRA, 2023, 636 : 42 - 74
  • [48] Simple modules for twisted Hamiltonian extended affine Lie algebras
    Tantubay, Santanu
    Chakraborty, Priyanshu
    Batra, Punita
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 696 : 29 - 45
  • [49] Dimensions of Demazure modules for rank two affine Lie algebras
    Sanderson, YB
    COMPOSITIO MATHEMATICA, 1996, 101 (02) : 115 - 131
  • [50] Gauge Modules for the Lie Algebras of Vector Fields on Affine Varieties
    Yuly Billig
    Jonathan Nilsson
    André Zaidan
    Algebras and Representation Theory, 2021, 24 : 1141 - 1153