Stereographic Metric and Dimensions of Fractals on the Sphere

被引:0
作者
Md. Nasim Akhtar
Alamgir Hossain
机构
[1] Presidency University,Department of Mathematics
来源
Results in Mathematics | 2022年 / 77卷
关键词
Stereographic projection; chordal metric; stereographic metric; iterated function systems; Hausdörff dimensions; box dimensions; Assouad dimensions; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
A new metric, called stereographic metric is introduced on the sphere S\N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {S}}}{\setminus } N$$\end{document}, where N is the north pole of the sphere S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {S}}}$$\end{document}. Some properties of the iterated function system and its attractor on the sphere S\N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {S}}}{\setminus } N$$\end{document} is characterized with respect to the stereographic metric, chordal metric and Euclidean metric. For a fixed non-empty compact subset F of S\N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {S}}}{\setminus } N$$\end{document}, the relation between the Hausdörff dimensions of F with respect to the Euclidean metric and stereographic metric is investigated as well as a similar investigation is made for a non-empty compact subset K on the plane z=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=0$$\end{document} with respect to the Euclidean metric and chordal metric. We also compare the Hausdörff dimensions of a non-empty compact subset F on the sphere S\N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {S}}}{\setminus } N$$\end{document} and its projection F′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F'$$\end{document} (through the stereographic map), on the plane z=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=0$$\end{document}. Also, we found similar results for Box dimensions as well as Assouad dimensions. Finally, we define a fractal path on the sphere S\N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {S}}}{\setminus } N$$\end{document}.
引用
收藏
相关论文
共 5 条